Space

February 1, 2013

Herschel finds star possibly making planets past its prime

A star thought to have passed the age at which it can form planets may in fact be creating new worlds. The disk of material surrounding the surprising star called TW Hydrae may be massive enough to make even more planets than we have in our own solar system.

The findings were made using the European Space Agency’s Herschel Space Telescope, a mission in which NASA is a participant.

At roughly 10 million years old and 176 light years away, TW Hydrae is relatively close to Earth by astronomical standards. Its planet-forming disk has been well studied. TW Hydrae is relatively young but, in theory, it is past the age at which giant plants already may have formed.

“We didn’t expect to see so much gas around this star,” said Edwin Bergin of the University of Michigan in Ann Arbor. Bergin led the new study appearing in the journal Nature. “Typically stars of this age have cleared out their surrounding material, but this star still has enough mass to make the equivalent of 50 Jupiters,” Bergin said.

In addition to revealing the peculiar state of the star, the findings also demonstrate a new, more precise method for weighing planet-forming disks. Previous techniques for assessing the mass were indirect and uncertain. The new method can directly probe the gas that typically goes into making planets.

Planets are born out of material swirling around young stars, and the mass of this material is a key factor controlling their formation. Astronomers did not know before the new study whether the disk around TW Hydrae contained enough material to form new planets similar to our own.

“Before, we had to use a proxy to guess the gas quantity in the planet-forming disks,” said Paul Goldsmith, the NASA project scientist for Herschel at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “This is another example of Herschel’s versatility and sensitivity yielding important new results about star and planet formation.”

Using Herschel, they were able to take a fresh look at the disk with the space telescope to analyze light coming from TW Hydrae and pick out the spectral signature of a gas called hydrogen deuteride. Simple hydrogen molecules are the main gas component of planets, but they emit light at wavelengths too short to be detected by Herschel. Gas molecules containing deuterium, a heavier version of hydrogen, emit light at longer, far-infrared wavelengths that Herschel is equipped to see. This enabled astronomers to measure the levels of hydrogen deuteride and obtain the weight of the disk with the highest precision yet.

“Knowing the mass of a planet-forming disk is crucial to understanding how and when planets take shape around other stars,” said Glenn Wahlgren, Herschel program scientist at NASA Headquarters in Washington.

Whether TW Hydrae’s large disk will lead to an exotic planetary system with larger and more numerous planets than ours remains to be seen, but the new information helps define the range of possible planet scenarios.

“The new results are another important step in understanding the diversity of planetary systems in our universe,” said Bergin. “We are now observing systems with massive Jupiters, super-Earths, and many Neptune-like worlds. By weighing systems at their birth, we gain insight into how our own solar system formed with just one of many possible planetary configurations.”

Herschel is a European Space Agency (ESA) cornerstone mission, with science instruments provided by a consortium of European institutes and with important participation by NASA. NASA’s Herschel Project Office is based at JPL, which contributed mission-enabling technology for two of Herschel’s three science instruments. NASA’s Herschel Science Center, part of the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, supports the United States astronomical community. Caltech manages JPL for NASA.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA image

Ozone-depleting compound persists, NASA research shows

NASA image Satellites observed the largest ozone hole over Antarctica in 2006. Purple and blue represent areas of low ozone concentrations in the atmosphere; yellow and red are areas of higher concentrations. NASA research show...
 
 

NASA’s RXTE satellite decodes rhythm of an unusual black hole

https://www.youtube.com/embed/TSWZI2oUgnI?enablejsapi=1&rel=0 Astronomers have uncovered rhythmic pulsations from a rare type of black hole 12 million light-years away by sifting through archival data from NASA’s Rossi X-ray Timing Explorer satellite. The signals have helped astronomers identify an unusual midsize black hole called M82 X-1, which is the brightest X-ray source in a ga...
 
 

NASA announces awards to expand informal STEM education network

NASA has selected 12 informal educational institutions to receive approximately $6 million in agency funding to provide compelling science, technology, engineering and math opportunities in informal education settings, such as museums, science centers, planetariums and NASA visitor centers. The selected projects will complement and enhance STEM curricula taught in traditional kindergarten throu...
 

 

Orbital completes third cargo delivery mission to ISS

Orbital Sciences Corporation, one of the world’s leading space technology companies, announced Aug. 18 the successful completion of its third cargo delivery mission to the International Space Station in the past 10 months, including the initial demonstration flight completed in October 2013 and the first two operational missions under the company’s $1.9 billion Commercial Resupply...
 
 

NASA selects Texas State University to provide educator professional development

NASA’s Minority University Research and Education Project has awarded approximately $15 million in a new, five-year cooperative agreement to Texas State University at San Marcos to provide educator professional development using NASA-related science, technology, engineering and math content. The selection is in response to an Education Opportunities in NASA STEM ñ Educator Professional D...
 
 
Photograph courtesy of NASA/SAO/CXC/R. Margutti et al

NASA’s Chandra Observatory searches for trigger of nearby supernova

Photograph courtesy of NASA/SAO/CXC/R. Margutti et al NASA’s Chandra X-ray Observatory is helping determine what caused SN 2014J, one of the closest supernovas discovered in decades. By comparing X-ray data taken before and a...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>