Business

February 8, 2013

Northrop Grumman successfully flight demonstrates new mission management control system for UASs

Northrop Grumman successfully flew a RQ-4 Global Hawk unmanned aircraft for the first time using open architecture-based command and control software and hardware developed by the company, moving the company one step closer to offering its common Mission Management Control System product, which can be implemented across various unmanned aircraft systems to improve mission effectiveness and reduce training requirements.

The flight demonstration was conducted last December, and was sponsored by the U.S. Air Force’s Global Hawk Program Office as part of the Ground Station Technical Refresh contract.
The MMCS used for the demonstration was comprised of hardware and software developed by the company’s Common Mission Management System product center. The MMCS is based upon an open, nonproprietary, standards-based, scalable, common architecture and service descriptions.

“The CMMS product center is a game changer. It is a new way of thinking about unmanned aircraft systems and their mission management and control architectures,” said Mike Leahy, director of CMMS for Northrop Grumman Aerospace Systems. “The CMMS approach offers multiple benefits, including savings in both acquisition, and operational and maintenance costs. This approach eliminates stove-piped systems and simplifies training requirements.”

During the flight demonstration, a Global Hawk took off under operator control through the U.S. Air Force Launch and Recovery Element at Edwards Air Force Base, Calif. Once airborne, aircraft control was successfully transferred to the MMCS located at the Global Hawk Systems Integration Laboratory in San Diego. The aircraft was then flown through a series of maneuvers until control was transferred back to the LRE for landing.

The Ground Station Technical Refresh contract is a stepping stone for continued development of common UAS control systems that can be used by a variety of unmanned platforms. Currently, each UAS requires a costly dedicated, custom-built command and control system. By developing a common foundation for command and control with sufficient flexibility to meet a range of standards, CMMS will ultimately be able to support a variety of UAS platforms.

The CMMS product line is built upon standard off-the-shelf commercial hardware and core software infrastructure that decreases the time required to develop new unmanned control systems and enhances future technical upgrades because the system architecture is based upon well defined industry standards.
Additionally, with the CMMS product line, pilots will be able to operate a variety of dissimilar unmanned platforms using the same informational displays and control features, thereby improving mission effectiveness while reducing training requirements.

“This demonstration validates our approach to common, modular, multiplatform mission control systems,” said Doug Valenzuela, Northrop Grumman’s program manager for the Ground Station Technical Refresh program. “We were able to reuse components from proven programs and integrate them into a common standards-based infrastructure to establish a baseline that will meet the requirements of multiple programs. This is truly a huge step toward meeting the objective of a common UAS mission control solution.”




All of this week's top headlines to your email every Friday.


 
 

 

Lockheed Martin teams with Roketsan of Turkey on new standoff missile for F-35

Roketsan and Lockheed Martin signed a teaming agreement Oct. 22 for collaboration on the SOM-J, a new generation air-to-surface Standoff Cruise Missile for the F-35 Lightning II. The SOM system is an autonomous, long-range, low-observable, all-weather, precision air-to-surface cruise missile. The SOM-J variant is tailored for internal carriage on the F-35 aircraft. The companies will...
 
 
boeing-777-facility2

Boeing celebrates groundbreaking for 777X composite wing center

  Investment of more than $1 billion will sustain thousands of Puget Sound jobs Boeing Oct. 21 celebrated the groundbreaking of its new 777X Composite Wing Center at the Everett, Wash., campus. Permitting for the new 1-mil...
 
 

Northrop Grumman to supply new attitude, heading reference system for Airbus helicopters

Northrop Grumman has been selected by Airbus Helicopters to certify and deliver its new LCR-350 Attitude and Heading Reference System for several helicopter platforms. Developed by Northrop Grumman’s subsidiary in Germany, Northrop Grumman LITEF, the LCR-350 AHRS can be used in civil and military applications on rotary- and fixed-wing platforms, providing critical flight control data...
 

 
dassault

Dassault Falcon Jet establishes new pilot operational support team

Arnaud Paulmier, head of Dassault Falcon Jet’s new operational support team. Dassault Falcon Jet recently established a new Pilot Operational Support Team in Teterboro, N.J., to support operators in the Western Hemisphere. Th...
 
 

U.S. Navy awards Raytheon $49.5 million enhanced Laser Maverick production contract

The U.S. Navy has awarded Raytheon a $49.5 million contract for production of new laser-guided Maverick missiles (AGM-65E2/L). The Navy also intends to exercise a contract option to purchase additional units bringing the total contract value to $54.9 million. The Maverick weapon system, a U.S. Air Force-led joint service program, is a forward firing, precision-guided,...
 
 
Northrop Grumman photograph by Alan Radecki

Second Northrop Grumman-built Triton UAS completes first flight

Northrop Grumman photograph by Alan Radecki The second MQ-4C Triton, built by Northrop Grumman for the U.S. Navy, successfully completed its first flight Oct. 15 PALMDALE, Calif. – The U.S. Navy’s second MQ-4C Triton un...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>