Space

February 11, 2013

NASA Curiosity rover collects first Martian bedrock sample

NASA’s Curiosity rover has, for the first time, used a drill carried at the end of its robotic arm to bore into a flat, veiny rock on Mars and collect a sample from its interior. This is the first time any robot has drilled into a rock to collect a sample on Mars.

The fresh hole, about 0.63 inch (1.6 centimeters) wide and 2.5 inches (6.4 centimeters) deep in a patch of fine-grained sedimentary bedrock, can be seen in images and other data Curiosity beamed to Earth Saturday. The rock is believed to hold evidence about long-gone wet environments. In pursuit of that evidence, the rover will use its laboratory instruments to analyze rock powder collected by the drill.

“The most advanced planetary robot ever designed now is a fully operating analytical laboratory on Mars,” said John Grunsfeld, NASA associate administrator for the agency’s Science Mission Directorate. “This is the biggest milestone accomplishment for the Curiosity team since the sky-crane landing last August, another proud day for America.”

For the next several days, ground controllers will command the rover’s arm to carry out a series of steps to process the sample, ultimately delivering portions to the instruments inside.

“We commanded the first full-depth drilling, and we believe we have collected sufficient material from the rock to meet our objectives of hardware cleaning and sample drop-off,” said Avi Okon, drill

cognizant engineer at NASA’s Jet Propulsion Laboratory, Pasadena.

Rock powder generated during drilling travels up flutes on the bit. The bit assembly has chambers to hold the powder until it can be transferred to the sample-handling mechanisms of the rover’s Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA) device.

Before the rock powder is analyzed, some will be used to scour traces of material that may have been deposited onto the hardware while the rover still was on Earth, despite thorough cleaning before launch.

“We’ll take the powder we acquired and swish it around to scrub the internal surfaces of the drill bit assembly,” said JPL’s Scott McCloskey, drill systems engineer. “Then we’ll use the arm to transfer the powder out of the drill into the scoop, which will be our first chance to see the acquired sample.”

“Building a tool to interact forcefully with unpredictable rocks on Mars required an ambitious development and testing program,” said JPL’s Louise Jandura, chief engineer for Curiosity’s sample system.”To get to the point of making this hole in a rock on Mars, we made eight drills and bored more than 1,200 holes in 20 types of rock on Earth.”

Inside the sample-handling device, the powder will be vibrated once or twice over a sieve that screens out any particles larger than six-thousandths of an inch (150 microns) across. Small portions of the sieved sample will fall through ports on the rover deck into the Chemistry and Mineralogy (CheMin) instrument and the Sample Analysis at Mars (SAM) instrument. These instruments then will begin the much-anticipated detailed analysis.

The rock Curiosity drilled is called “John Klein” in memory of a Mars Science Laboratory deputy project manager who died in 2011. Drilling for a sample is the last new activity for NASA’s Mars Science Laboratory Project, which is using the car-size Curiosity rover to investigate whether an area within Mars’ Gale Crater has ever offered an environment favorable for life.

JPL manages the project for NASA’s Science Mission Directorate in Washington, D.C.

 




All of this week's top headlines to your email every Friday.


 
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 

 
Image courtesy of NASA, J. Lotz, (STScI

NASA’s Hubble finds extremely distant galaxy through cosmic magnifying glass

Image courtesy of NASA, J. Lotz, (STScI The mammoth galaxy cluster Abell 2744 is so massive that its powerful gravity bends the light from galaxies far behind it, making these otherwise unseen background objects appear larger a...
 
 
NASA photograph

NASA TV to air Russian spacewalk from International Space Station

NASA photograph Expedition 41 Commander Max Suraev and Flight Engineer Alexander Samokutyaev of the Russian Federal Space Agency will don Orlan spacesuits and step outside the International Space Station Oct. 22, to perform wor...
 
 
Ball Aerospace photograph

Ball Aerospace green propellant infusion mission to host three DOD space experiments

Ball Aerospace photograph The NASA and Ball Aerospace & Technologies Corp. Green Propellant Infusion Mission (GPIM) will fly three Defense Department experimental hosted payloads when it launches in 2016. The NASA and Ball ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>