Space

February 11, 2013

NASA Curiosity rover collects first Martian bedrock sample

NASA’s Curiosity rover has, for the first time, used a drill carried at the end of its robotic arm to bore into a flat, veiny rock on Mars and collect a sample from its interior. This is the first time any robot has drilled into a rock to collect a sample on Mars.

The fresh hole, about 0.63 inch (1.6 centimeters) wide and 2.5 inches (6.4 centimeters) deep in a patch of fine-grained sedimentary bedrock, can be seen in images and other data Curiosity beamed to Earth Saturday. The rock is believed to hold evidence about long-gone wet environments. In pursuit of that evidence, the rover will use its laboratory instruments to analyze rock powder collected by the drill.

“The most advanced planetary robot ever designed now is a fully operating analytical laboratory on Mars,” said John Grunsfeld, NASA associate administrator for the agency’s Science Mission Directorate. “This is the biggest milestone accomplishment for the Curiosity team since the sky-crane landing last August, another proud day for America.”

For the next several days, ground controllers will command the rover’s arm to carry out a series of steps to process the sample, ultimately delivering portions to the instruments inside.

“We commanded the first full-depth drilling, and we believe we have collected sufficient material from the rock to meet our objectives of hardware cleaning and sample drop-off,” said Avi Okon, drill

cognizant engineer at NASA’s Jet Propulsion Laboratory, Pasadena.

Rock powder generated during drilling travels up flutes on the bit. The bit assembly has chambers to hold the powder until it can be transferred to the sample-handling mechanisms of the rover’s Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA) device.

Before the rock powder is analyzed, some will be used to scour traces of material that may have been deposited onto the hardware while the rover still was on Earth, despite thorough cleaning before launch.

“We’ll take the powder we acquired and swish it around to scrub the internal surfaces of the drill bit assembly,” said JPL’s Scott McCloskey, drill systems engineer. “Then we’ll use the arm to transfer the powder out of the drill into the scoop, which will be our first chance to see the acquired sample.”

“Building a tool to interact forcefully with unpredictable rocks on Mars required an ambitious development and testing program,” said JPL’s Louise Jandura, chief engineer for Curiosity’s sample system.”To get to the point of making this hole in a rock on Mars, we made eight drills and bored more than 1,200 holes in 20 types of rock on Earth.”

Inside the sample-handling device, the powder will be vibrated once or twice over a sieve that screens out any particles larger than six-thousandths of an inch (150 microns) across. Small portions of the sieved sample will fall through ports on the rover deck into the Chemistry and Mineralogy (CheMin) instrument and the Sample Analysis at Mars (SAM) instrument. These instruments then will begin the much-anticipated detailed analysis.

The rock Curiosity drilled is called “John Klein” in memory of a Mars Science Laboratory deputy project manager who died in 2011. Drilling for a sample is the last new activity for NASA’s Mars Science Laboratory Project, which is using the car-size Curiosity rover to investigate whether an area within Mars’ Gale Crater has ever offered an environment favorable for life.

JPL manages the project for NASA’s Science Mission Directorate in Washington, D.C.

 




All of this week's top headlines to your email every Friday.


 
 

 
nasa-astronaut

Veteran NASA astronaut, spacewalker retires from NASA

Veteran astronaut Mike Foreman has retired from NASA to join a Houston-based consulting firm. A retired captain in the U.S. Navy, Foreman’s last day with the agency is July 31. “Mike is a great American who has served our ...
 
 
NASA/JPL-Caltech photograph

NASA selects proposals to study neutron stars, black holes, more

NASA/JPL-Caltech photograph The Nuclear Spectroscopic Telescope Array (NuSTAR), launched in 2012, is an Explorer mission that allows astronomers to study the universe in high energy X-rays. NASA has selected five proposals subm...
 
 
NASA/JPL-Caltech  image

NASA’s Spitzer confirms closest rocky exoplanet

NASA/JPL-Caltech image This artist’s concept shows the silhouette of a rocky planet, dubbed HD 219134b. At 21 light-years away, the planet is the closest outside of our solar system that can be seen crossing, or transitin...
 

 

NASA awards contract to support agency’s human spaceflight programs

NASA has selected Wyle Laboratories Inc., of El Segundo, Calif., to provide biomedical, medical and health services in support of all human spaceflight programs at the agency’s Johnson Space Center in Houston. The work supports ongoing research aboard the International Space Station and helps enable the journey to Mars. The Human Health and Performance contract...
 
 
nasa-astronaut

Astronaut Stephen Frick retires from NASA

Astronaut Stephen Frick has retired from NASA to accept a position in the private sector. Frick, who flew as both a shuttle pilot and commander, left the Agency July 13. Steve has been a great asset to the astronaut office and ...
 
 
NASA/JPL-CalTech/R. Hurt photograph

NASA’s Kepler mission discovers bigger, older cousin to Earth

NASA/JPL-CalTech/R. Hurt photograph This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>