Space

February 11, 2013

NASA launches new Earth observation satellite to continue 40-year legacy

The United Launch Alliance Atlas V rocket carrying the Landsat Data Continuity Mission spacecraft launches from Vandenberg Air Force Base Space Complex 3 at 10:02 p.m., PST.

NASA’s Landsat Data Continuity Mission roared into space at 10:02 p.m., PST, Feb. 11 aboard an Atlas V rocket from Vandenberg Air Force Base, Calif.

The LDCM spacecraft separated from the rocket 79 minutes after launch and the first signal was received 3 minutes later at a ground station in Svalbard, Norway. The solar arrays deployed 86 minutes after launch, and the spacecraft is generating power from them. LDCM is on course to reach its operational, sun-synchronous, polar orbit 438 miles (705 kilometers) above Earth within two months.

“Landsat is a centerpiece of NASA’s Earth Science program, and today’s successful launch will extend the longest continuous data record of Earth’s surface as seen from space,” NASA Administrator Charles Bolden said. “This data is a key tool for monitoring climate change and has led to the improvement of human and biodiversity health, energy and water management, urban planning, disaster recovery and

agriculture monitoring – all resulting in incalculable benefits to the U.S. and world economy.”

LDCM will go through a check-out phase for the next three months. Afterward, operational control will be transferred to NASA’s mission partner, the Department of the Interior’s U.S. Geological Survey , and the satellite will be renamed Landsat 8. Data will be archived and distributed free over the Internet from the Earth Resources and Science center in Sioux Falls, S.D. Distribution of Landsat 8 data from the USGS archive is expected to begin within 100 days of launch.

LDCM is the eighth in the Landsat series of satellites that have been continuously observing Earth’s land surfaces since 1972.

“Landsat has been delivering invaluable scientific information about our planet for more than forty years,” Interior Secretary Ken Salazar said. “It’s an honor to be a part of today’s launch to ensure this critical data will continue to help us better understand our natural resources and help people like water managers, farmers, and resource managers make informed decisions.”

The use of Landsat data been transformed in recent years by advancements in computing power and the decision by USGS to allow free online access to the information. This revolution has allowed scientists to detect changes over time to our planet and has enabled a host of applications based on Landsat measurements to be developed by researchers, the private sector, and state, local and tribal governments.

LDCM continues that legacy with more and better observations. The spacecraft carries two instruments, the Operational Land Imager and Thermal Infrared Sensor. The easurements will be compatible with data from past Landsat satellites, but the LDCM instruments use advanced technology to improve reliability, sensitivity and data quality.

“LDCM is the best Landsat satellite ever built,” said Jim Irons, a LDCM project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “The technology will advance and improve the array of scientific investigations and resource management applications supported by Landsat images. I anticipate new knowledge and applications to emerge with an increasing demand for the data.”

OLI will continue observations currently made by Landsat 7 in the visible, near infrared, and shortwave infrared portions of the electromagnetic spectrum. It also will take measurements in two new bands, one to observe high-altitude cirrus clouds and another to observe atmospheric aerosols as well as water quality in lakes and shallow coastal waters. OLI’s new design has fewer moving parts than instruments on previous Landsat satellites.

TIRS will collect data on heat emitted from Earth’s surface in two thermal bands, as compared with a single thermal band on previous Landsat satellites. These thermal band observations are becoming increasingly vital to monitoring water consumption, especially in the arid western United States.

Ball Aerospace & Technologies Corp. built the OLI instrument in Boulder, Colo. NASA’s Goddard Space Flight Center built the TIRS instrument. Orbital Sciences Corporation built, integrated, and tested the spacecraft in Gilbert, Ariz. USGS provided the LDCM ground system. The launch was managed by NASA’s Launch Services Program based at the agency’s Kennedy Space Center in Florida. United Launch Alliance provided the Atlas V launch vehicle.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA begins engine test project for space launch system rocket

NASA photograph RS-25 rocket engine No. 0525 is positioned onto the A-1 Test Stand at NASAís Stennis Space Center in Mississippi preparation for a series of developmental tests. Engineers have taken a crucial step in preparing...
 
 

SSL selected to study asteroid retrieval for NASA

Space Systems/Loral, a leading provider of commercial satellites, announced July 18 that it was one of the companies selected by NASA to study system concepts and key technologies for NASA’s Asteroid Redirect Mission, which is expected to be a key part of the agency’s path to sending humans to Mars. SSL will conduct two studies;...
 
 
NASA image

NASA turns over next-gen air traffic management tool to FAA

NASA image As seen in this image, Terminal Sequencing and Spacing technology enables air traffic controllers to better manage the spacing between aircraft as they save both time and fuel and reducing emissions, flying more effi...
 

 
Image courtesy of NASA/JPL-Caltech, and SETI Institute

NASA seeks proposals for Europa mission science instruments

Image courtesy of NASA/JPL-Caltech, and SETI Institute Compiled from NASAís Galileo spacecraft data, this colorized surface image of Europa shows the blue-white terrains which indicate relatively pure water ice. Scientists are...
 
 

NASA announces early career faculty space tech research grants

NASA has selected seven university-led proposals for the study of innovative, early stage technologies that address high priority needs for America’s space program. The selected proposals for unique, disruptive, or transformational space technologies will address challenges in robotic mobility when traversing extreme terrain, in developing lightweight and multifunctional materials and str...
 
 
NASA photograph

NASA Armstrong recalls first moon landing, preps for ‘next giant leap’

NASA photograph In this 1967 NASA Flight Research Center photograph the Lunar Landing Research Vehicle (LLRV) No. 2 is viewed from the front. This photograph provides a good view of the pilot’s platform with the restricti...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>