Business

February 13, 2013

Lockheed Martin WindTracer achives major airport efficiency enhancements

The U.S. Federal Aviation Administration has applied hundreds of thousands of research measurements made by Lockheed Martin’s WindTracer® Doppler lidar to redefine flight rules, achieving major efficiency enhancements at U. S. airports.

The FAA granted approval for San Francisco International Airport and Newark Liberty International Airport to conduct dependent arrival operations on their closely spaced parallel runway pairs.

SFO and EWR have joined a growing list of airports with CSPR geometries that are authorized by the Federal Aviation Administration to conduct a wake turbulence mitigation procedure for CSPR operation, known as FAA Order JO 7110.308 – Ch3. The safety assessment is enabled with significant amount of wake measurement research using WindTracer lidars.

The assessment permits reduced diagonal spacing of 1.5 nautical miles on adjacent runways relative to the leading large- and small-category aircraft with runway spacing less than 2500 feet under Instrument Flight Rules. Before the implementation of 7110.308, planes arriving on two such CSPRs were required to be spaced as if they were using a single runway, which effectively closed down one of the parallel runways under instrument conditions. This procedure at SFO and EWR is expected to reduce delays significantly.

“We are thrilled that the FAA has employed our WindTracer Doppler lidars to achieve these critical improvements to U. S. air traffic rules,” said Dr. Michael Margulis, director of WindTracer Programs at Lockheed Martin. “These changes will greatly increase U. S. civil airspace capacity while maintaining the highest standards of air traffic safety.”

The FAA Wake Turbulence Research Program has been using WindTracer systems since 2001 at multiple airport locations to conduct wake turbulence research measurements. The databases are carefully mined to provide data-driven assessment of ongoing and future wake turbulence mitigation concepts. In addition, wind data collection is also used to develop weather-based wake mitigation solutions.

The John A. Volpe National Transportation Systems Center, part of the U.S. Department of Transportation’s Research and Innovative Technology Administration, maintains and operates a fleet of WindTracers for the FAA Wake Turbulence Research Program and provides data analysis and other resource supports.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>