Business

February 13, 2013

Mars Science Lab drills to get rock powder sample

Tags:
Raphael Jaffe
staff writer

At the center of this image from NASA’s Curiosity rover is the hole in a rock called “John Klein” where the rover conducted its first sample drilling on Mars.

Curiosity has now successfully used all of its unique equipment to examine if Mars was capable of supporting microscopic life.

The percussion drill was used to bore into fine-grained sedimentary bedrock on Sol 182 of the mission [Feb 8].

The hole is about 0.63 inch (1.6 centimeters) wide and 2.5 inches (6.4 centimeters) deep. The rock powder travels up flutes on the bit, and enters the sample handling mechanism of the Curiosity.

This is the first time any robot has drilled into a rock to collect a sample on Mars. Scientist hope that rocks like this hold evidence about long-gone wet environments. In pursuit of that evidence, the rover will use its laboratory instruments to analyze the rock powder.

The Curiosity controllers at Jet Propulsion Lab cautiously used several days to tap the outcrop, and drill a shallow test hole, which can be seen in the photo below, along with the final hole. The actual drilling took about seven minutes.

ìWe believe we have collected sufficient material from the rock to meet our objectives of hardware cleaning and sample drop-off,” said Avi Okon, cognizant drill engineer at JPL.

Before the rock powder is analyzed, some will be used to scour traces of material that may have been deposited onto the hardware while the rover was still on Earth, despite thorough cleaning before launch. Also, there is some concern that microscopic chips of Teflon may have rubbed off the drill and mixed with the rock powder. Okon said that any Teflon contamination would be small, because of the short drilling time.

We’ll take the powder we acquired and swish it around to scrub the internal surfaces of the drill bit assembly,” said JPL’s Scott McCloskey, drill systems engineer. “Then we’ll use the arm to transfer the powder out of the drill into the scoop, which will be our first chance to see the acquired sample.”

Inside the sample-handling device, the powder will be vibrated once or twice over a sieve that screens out any particles larger than six-thousandths of an inch (150 microns) across. Small portions of the sieved sample will fall through ports on the rover deck into the Chemistry and Mineralogy (CheMin) instrument and the Sample Analysis at Mars (SAM) instrument. These instruments then will begin the much-anticipated detailed analysis.

Building a tool to interact forcefully with unpredictable rocks on Mars required an ambitious development and testing program,” said JPL’s Louise Jandura, chief engineer for Curiosity’s sample system. “To get to the point of making this hole in a rock on Mars, we made eight drills and bored more than 1,200 holes in 20 types of rock on Earth.”

Previous Mars explorers included tools to handle rocks and dirt, but Curiosity is the first to actually drill into the rocks. Opportunity and Spirit have rock grinders. The Phoenix probe to the frozen north pole carried an ice rasp which chiseled frozen soil.

The rock Curiosity drilled is called “John Klein,” in memory of a Mars Science Laboratory deputy project manager who died in 2011. Drilling for a sample is the last new activity for NASA’s Mars Science Laboratory Project, which is using the car-size Curiosity rover to investigate whether an area within Mars’ Gale Crater has ever offered an environment favorable for life.

ìThe most advanced planetary robot ever designed is now a fully operating analytical laboratory on Mars,” said John Grunsfeld, NASA associate administrator for the agency’s Science Mission Directorate. “This is the biggest milestone accomplishment for the Curiosity team since the sky-crane landing last August, another proud day for America.”




All of this week's top headlines to your email every Friday.


 
 

 
Raytheon photograph

Raytheon completes key Air, Missile Defense Radar reviews

Raytheon photograph Partially-populated, full-sized Air and Missile Defense Radar array. Raytheon has completed two critical program reviews for the new Air and Missile Defense Radar, the U.S. Navy’s next generation integ...
 
 
Insitu photograph

Insitu demonstrates long endurance capabilities of Integrator unmanned aircraft

Insitu photograph Insitu’s Integrator unmanned aircraft recovers via SkyHook; the aircraft recently completed a 24-hour endurance flight. Insitu announced July 22 the successful 24-hour flight of its Integrator unmanned a...
 
 

U.S. Navy selects Northrop Grumman for ship self-defense system

The U.S. Navy has awarded Northrop Grumman a $12 million task order for a full range of engineering services to continue modernizing the Ship Self-Defense System Mark 2. The contract has a potential value of $61 million over five years, if all options are exercised. SSDS MK2 is a combat system designed for anti-air defense...
 

 
Lockheed Martin photograph

Lockheed Martin selected for U.S. Air Force’s satellite hosted payload initiative

Lockheed Martin photograph Lockheed Martin has a long history of developing and integrating hosted payloads onto spacecraft. Since 2000, the company has delivered 84 payloads on 16 different types of satellites from multiple ma...
 
 
boeing-france

Boeing delivers upgraded French AWACS aircraft

Boeing on July 17 delivered on schedule the first of four upgraded French Airborne Warning and Control System aircraft. The upgraded aircraft will increase the fleet’s surveillance, communications and battle management ca...
 
 

Lockheed Martin demonstrates JAGM dual-mode guidance section in second flight test

Lockheed Martin recently demonstrated its Joint Air-to-Ground Missile dual-mode guidance section during a second internally funded flight test at Eglin Air Force Base, Fla. During the test, the rail-mounted JAGM flew 6.2 kilometers and initially acquired the target using its precision strike, semi-active laser. The dual-mode guidance section then engaged its millimeter wave radar, and...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>