Defense

February 15, 2013

Magnetic levitation track reaches new world record in speed

Tags:
A1C Daniel E. F. Liddicoet
Holloman AFB, N.M.

af-maglev1
The 846th Test Squadron at Holloman Air Force Base, N.M., successfully performed its most ambitious test to date on the magnetic levitation track at here, Feb. 7. Members of the 846th were able to use the Maglev track in conjunction with a new propulsion system to reach an astounding speed of more than 500 miles per hour.

“We went faster than we’ve ever gone before,” said Jim Daniel, 846th TS business development manager, “and that causes all kinds of interesting risks. In this business, there’s a lot of risk in the unknown, and we’ve never tested the Maglev system under these conditions.”

As Daniel explains, what makes the Maglev track so extraordinary is its ability to mimic flight conditions by drastically reducing the amount of vibration felt by the object being tested. The track enables this effect through the use of four superconductive electromagnets that attach to the test sled like wheels on a car. Once charged with a current, the magnets are able generate enough force to lift the sled about one inch off the track throughout the duration of the rocket propulsion.

Part of what makes the magnets so unique is their ability to display a phenomenon known as superconductivity. Once the magnets are in this state they have exactly zero electrical resistance, meaning that they can maintain a charge without an active current flowing into them. However, in order to reach this state, the magnets must be cooled below their characteristic critical temperature, approximately -450 degrees Fahrenheit. In order to get the magnets to be this cold, liquid helium must be pumped into the magnets until they are cold enough to hold a current. This passive system of charging the magnets differs from the active kind of magnetic levitation used in bullet trains that requires a constant source of electricity. As long as the magnets are cold enough and charged, no additional electrical power is required for them to be able to lift the sled.

Much of the technology used to complete the test was provided to the 846th by General Atomics, the primary contractor of the Maglev track.
af-maglev2
“What we were trying to do was prove the system,” said Daniel, “make sure that it works at higher speeds, and as a subtext of what was going on, we were trying to transition from General Atomics operating the system, to the Air Force operating the system. So it was a test for data, and a test to confirm our initial operating capability. Through the completion of this test, we are truly able to claim the Maglev system as an Air Force asset.”

Though the Maglev track has been tested before, this most recent test pushed its capabilities to the max.

As Daniel describes, six improved Zuni rockets were attached to the sled to provide the thrust necessary to reach the new speed. The sled was aligned along sophisticated dual-track beams made of concrete and embedded with copper, which repelled the magnets to allow for more stabilization.

“There are lots of forces at play with the testing of the Maglev system, you have magnetic forces, the forces from the rocket motors, and the forces from the air drag. All of these forces are fluctuating as the test is being performed, and part of our goal was to determine exactly how they interact with one another so that we can learn more about our capability with magnetic levitation.”

The Maglev’s success at here allows the 846th to provide a ground-based test environment that can accurately simulate the vibrations of a real flight test. Daniel explains that the smoothness of the ride is the Maglev’s key asset. With the stability that the Maglev track can offer, the most delicate components of a payload can be preserved intact throughout the duration of a test.

“It’s a more benign environment,” said Lt. Col. Keith Roessig, 846th TS commander, “the magnetic forces lifting and keeping the sled in the guide way reproduce very closely the aerodynamic loads seen during flight. With temperature, load and vibration instrumentation on the sled combined with high-speed camera footage of the test as it takes place, a complete record of the event is captured for further analysis. As an alternative to flight tests, the Maglev and the traditional steel rail can acquire roughly 90 percent of the data needed at about 10 percent of the cost.”

The test that took place Feb. 7 was the culmination of nearly two decades of intensive research and engineering. On the day of the test, several General Atomics personnel came to witness as the Air Force used the technology they developed to break new ground in magnetic levitation.

“The most exciting part of this test, beyond just the sheer display of power from the rockets, is being able to tell people that we now have this unique capability available using only Air Force personnel and assets, “said Roessig. ” We’re now able to provide quality test data to program offices for a whole new set of electronic systems at a fraction of the risk and cost inherent in flight test. This could truly be the next generation of test track.”

The 846th TS is a geographically separated unit of the 96th Test Wing, headquartered at Eglin Air Force Base, Fla.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 2, 2015

News: Israel lobbies for more missile defense funds than Obama sought - For the second consecutive year, Israeli officials have asked the U.S. Congress to add more than $300 million to President Barack Obama’s budget request for their nation’s missile-defense programs.   Business: Inside one of the most intense, and unusual, Pentagon contracting wars - The much-anticipated...
 
 

News Briefs March 2, 2015

Italy resumes Navy exercise amid new tensions over Libya The Italian Navy is resuming exercises in the Mediterranean Sea, including near the coast of Libya, amid concerns about rapidly deteriorating security in the North African nation. The exercise began March 2 and includes anti-submarine, anti-aircraft and anti-ship training operations. The exercise was suspended for a...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 

 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 
 

GA-ASI, Sener team to offer Predator B to Spain

General Atomics Aeronautical Systems, Inc. and SENER, a leading Spanish engineering company, announced March 2 that they have signed a teaming agreement that promotes the use of the multi-mission Predator B® RPA to support Spain’s airborne surveillance and reconnaissance requirements.  GAASI is a leading manufacturer of Remotely Piloted Aircraft systems, radars, and electro-optic and relate...
 
 
raytheon-satellite

Raytheon’s ‘Blue Marble’ imaging sensor delivered on schedule

Raytheon has delivered a second Visible Infrared Imaging Radiometer Suite instrument to support the National Oceanic and Atmospheric Administration’s Joint Polar Satellite System mission. The second VIIRS unit will fly ab...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>