Business

February 20, 2013

JLENS demonstrates tactical ballistic missile defense capability

Ballistic Missile Detection – Raytheon’s JLENS recently demonstrated the capability to detect ballistic missiles shortly after launch. A JLENS system, referred to as an orbit, consists of two tethered, 74-meter aerostats connected to mobile mooring stations, and communications and processing groups.

Enemy tactical ballistic missiles may soon be easier to detect and track.

During a series of recent tests at White Sands Missile Range, N.M., a Raytheon JLENS demonstrated tactical ballistic missile defense capability when it detected and tracked a total of four ballistic-missile surrogates during their ascent (boost) phase.

During the test, the JLENS X-Band radar tracked two ripple-fired and two individually fired ballistic-missile surrogates. The missiles flew flight profiles similar to the profiles enemy tactical ballistic missiles might fly in high-threat regions of the globe.

“Along with other systems in Raytheon’s family of X-Band radars, JLENS can provide a robust early warning and tracking capability against ballistic missiles,” said David Gulla, vice president of Global Integrated Sensors for Raytheon’s Integrated Defense Systems business. “This TBMD demonstration and JLENS’ other recent successes prove that the system is ready to deploy for a combatant commander operational evaluation.”

JLENS demonstrated its capability against cruise missiles when it enabled Patriot and Standard Missile-6 intercepts of cruise-missile surrogates during separate tests. JLENS also completed two developmental tests and demonstrated its ability to stay aloft for long durations.

“JLENS’ TBMD capability gives combatant commands another tool they can use to help protect the U.S., deployed forces, our allies and friends from the growing ballistic missile threat,” said Dean Barten, the U.S. Army’s JLENS program manager. “JLENS’ TBMD capability, when coupled with its ability to conduct 360-degree long-range surveillance capability and simultaneously detect and engage threats like swarming boats and anti-ship cruise missiles from up to 340 miles away, gives commanders a powerful proven capability.”

JLENS, an elevated, persistent over-the-horizon sensor system, uses a powerful integrated radar system to detect, track and target a variety of threats.
This capability better enables commanders to defend against threats including hostile cruise missiles; low-flying manned and unmanned aircraft; and moving surface vehicles such as boats, automobiles and trucks; and to provide ascent-phase detection of tactical ballistic missiles and large caliber rockets.

About JLENS

  • A JLENS system, referred to as an orbit, consists of two tethered, 74-meter aerostats connected to mobile mooring stations and communications and processing groups.
  • The aerostats fly as high as 10,000 feet and can remain aloft and operational for up to 30 days.
  • One aerostat carries surveillance radar with 360-degree surveillance capability; the other aerostat carries a fire control radar.
  • According to research conducted by the U.S. Army’s JLENS Product office, the cost of operating large, fixed-wing surveillance aircraft is 5-7 times greater than the cost of operating JLENS.
  • The JLENS surveillance radar can simultaneously track hundreds of threats; the fire control radar can simultaneously target dozens of threats.

The test, which was conducted at White Sands Missile Range, N.M., met all primary and secondary objectives, including launch point estimation, ballistic tracking and discrimination performance.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>