Tech

February 25, 2013

DARPA Experimental Aircraft Program to develop next generation of vertical flight

darpa-aircraft
One of the greatest challenges of the past half century for aerodynamics engineers has been how to increase the top speeds of aircraft that take off and land vertically without compromising the aircraft’s lift to power in hover or its efficiency during long-range flight.

The versatility of helicopters and other vertical take-off and landing aircraft make them ideal for a host of military operations. Currently, only helicopters can maneuver in tight areas, land in unprepared areas, move in all directions, and hover in midair while holding a position. This versatility often makes rotary-wing and other VTOL aircraft the right aerial platform for transporting troops, surveillance operations, special operations and search-and-rescue missions.

Compared to fixed-wing aircraft, helicopters are slower-leaving them more vulnerable to damage from enemy weapons. Special operations that rely on lightning-quick strikes and medical units that transport patients to care facilities need enhanced speed to shorten mission times, increase mission range, reduce the number of refueling events and, most important, reduce exposure to the adversary.

By their very design, rotary-wing aircraft that take off and land vertically have a disadvantage achieving speeds comparable to fixed-wing aircraft. Since its invention, engineers have attempted to overcome this design barrier but have encountered lower fuel efficiency and less lift capacity, controllability, simplicity, and reliability of design. While engineers have improved the speed of fixed-wing aircraft-achieving two and three times the speeds of jets designed since the 1960s-attempts to increase efficient VTOL aircraft speed have stalled.

“For the past 50 years, we have seen jets go higher and faster while VTOL aircraft speeds have flat-lined and designs have become increasingly complex,” said Ashish Bagai, DARPA program manager. “To overcome this problem, DARPA has launched the VTOL X-Plane program to challenge industry and innovative engineers to concurrently push the envelope in four areas: speed, hover efficiency, cruise efficiency and useful load capacity.”

“We have not made this easy,” he continued. “Strapping rockets onto the back of a helicopter is not the type of approach we’re looking for. The engineering community is familiar with the numerous attempts in the past that have not worked. This time, rather than tweaking past designs, we are looking for true cross-pollinations of designs and technologies from the fixed-wing and rotary-wing worlds. The elegant confluence of these engineering design paradigms is where this program should find some interesting results.”

A Proposers’ Day will be held March 14.

The Broad Agency Announcement for the solicitation can be found at: https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-13-19/listing.html.




All of this week's top headlines to your email every Friday.


 
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>