Tech

February 25, 2013

DARPA Experimental Aircraft Program to develop next generation of vertical flight

darpa-aircraft
One of the greatest challenges of the past half century for aerodynamics engineers has been how to increase the top speeds of aircraft that take off and land vertically without compromising the aircraft’s lift to power in hover or its efficiency during long-range flight.

The versatility of helicopters and other vertical take-off and landing aircraft make them ideal for a host of military operations. Currently, only helicopters can maneuver in tight areas, land in unprepared areas, move in all directions, and hover in midair while holding a position. This versatility often makes rotary-wing and other VTOL aircraft the right aerial platform for transporting troops, surveillance operations, special operations and search-and-rescue missions.

Compared to fixed-wing aircraft, helicopters are slower-leaving them more vulnerable to damage from enemy weapons. Special operations that rely on lightning-quick strikes and medical units that transport patients to care facilities need enhanced speed to shorten mission times, increase mission range, reduce the number of refueling events and, most important, reduce exposure to the adversary.

By their very design, rotary-wing aircraft that take off and land vertically have a disadvantage achieving speeds comparable to fixed-wing aircraft. Since its invention, engineers have attempted to overcome this design barrier but have encountered lower fuel efficiency and less lift capacity, controllability, simplicity, and reliability of design. While engineers have improved the speed of fixed-wing aircraft-achieving two and three times the speeds of jets designed since the 1960s-attempts to increase efficient VTOL aircraft speed have stalled.

“For the past 50 years, we have seen jets go higher and faster while VTOL aircraft speeds have flat-lined and designs have become increasingly complex,” said Ashish Bagai, DARPA program manager. “To overcome this problem, DARPA has launched the VTOL X-Plane program to challenge industry and innovative engineers to concurrently push the envelope in four areas: speed, hover efficiency, cruise efficiency and useful load capacity.”

“We have not made this easy,” he continued. “Strapping rockets onto the back of a helicopter is not the type of approach we’re looking for. The engineering community is familiar with the numerous attempts in the past that have not worked. This time, rather than tweaking past designs, we are looking for true cross-pollinations of designs and technologies from the fixed-wing and rotary-wing worlds. The elegant confluence of these engineering design paradigms is where this program should find some interesting results.”

A Proposers’ Day will be held March 14.

The Broad Agency Announcement for the solicitation can be found at: https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-13-19/listing.html.




All of this week's top headlines to your email every Friday.


 
 

 
University of Alaska-Fairbanks photograph by Chris Larsen

NASA airborne campaigns focus on climate impacts in Arctic

University of Alaska-Fairbanks photograph by Chris Larsen Changes in more than 130 Alaskan glaciers are being surveyed by scientists at the University of Alaska-Fairbanks in a DHC-3 Otter as part of NASA’s multi-year Oper...
 
 
NASA/SSAI photograph by Edward Winstead

ACCESS II confirms jet biofuel burns cleaner

NASA/ORAU photograph by Richard Moore NASA’s DC-8 research aircraft leads one of the ACCESS II sampler aircraft across the early morning California sky.   Flying high above the California desert, NASA researchers rec...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 

 
NASA photograph by David Alexander

NASA MQ-9 remotely piloted aircraft completes visual, radar mission in Hawaii

NASA photograph “Ikhana,” NASA’s MQ-9 remotely piloted research aircraft, carries a maritime radar in a specialized centerline pod during a flight to check out systems prior to the aircraft’s deployment ...
 
 
NASA photograph by Tom Tschida

NASA Armstrong’s space shuttle Mate-Demate Device coming down

NASA photograph by Tom Tschida The space shuttle Mate-Demate Device that stood as an iconic symbol of NASA’s now-concluded Space Shuttle Program at NASA Armstrong Flight Research Center for 38 years is being dismantled af...
 
 

NASA awards research facilities, engineering support services contract

NASA has awarded a contract for research facilities and engineering support services to InuTeq, LLC of Greenbelt, Maryland, in support of the Mission Information and Test Systems Directorate at NASA’s Armstrong Flight Research Center, Edwards, Calif. This cost-plus-award-fee contract covers a one-year base period beginning Nov. 1, 2014 and four one-year options, and is valued...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>