Tech

March 6, 2013

DARPA’s new TERN program aims for eyes in the sky from the sea

darpa-isr
Effective 21st-century warfare requires the ability to conduct airborne intelligence, surveillance and reconnaissance and strike mobile targets anywhere, around the clock.

Current technologies, however, have their limitations. Helicopters are relatively limited in the distance and flight time.

Fixed-wing manned and unmanned aircraft can fly farther and longer but require either aircraft carriers or large, fixed land bases with runways often longer than a mile. Moreover, establishing these bases or deploying carriers requires substantial financial, diplomatic and security commitments that are incompatible with rapid response.

To help overcome these challenges and expand DOD options, DARPA has launched the Tactically Exploited Reconnaissance Node program. Seeking to combine the strengths of both land- and sea-based approaches to supporting airborne assets, TERN envisions using smaller ships as mobile launch and recovery sites for medium-altitude long-endurance fixed-wing unmanned aircraft. Named after the family of seabirds known for flight endurance ñ many species migrate thousands of miles each year ñ TERN aims to make it much easier, quicker and less expensive for DOD to deploy ISR and strike capabilities almost anywhere in the world.

It’s like having a falcon return to the arm of any person equipped to receive it, instead of to the same static perch every time, said Daniel Patt, DARPA program manager. About 98 percent of the worldís land area lies within 900 nautical miles of ocean coastlines. Enabling small ships to launch and retrieve long-endurance UAVs on demand would greatly expand our situational awareness and our ability to quickly and flexibly engage in hotspots over land or water.

To familiarize potential participants with the technical objectives of TERN, DARPA will host a Proposers’ Day March 20, 2013, in the DARPA Conference Center. For details, visit: http://go.usa.gov/2gxJ. Registration closes at noon, EDT, March 18.

DARPA seeks proposals that would design, develop and demonstrate a MALE UAV and an associated automated launch and recovery system. The UAV would have to carry a 600-pound payload and have an operational radius of 600 to 900 nautical miles from its host vessel. The launch and recovery system would have to fit Littoral Combat Ship 2 (LCS-2)-class ships and other surface combat vessels as feasible.

Key technical challenges include:

  • Devising a reliable launch and recovery technique that enables large aircraft operations from smaller ships, even in rough seas;
  • Designing an aircraft with range, endurance and payload comparable to emerging land-based unmanned aircraft, while still meeting the demands of the maritime environment;
  • Ensuring the entire system can operate with minimal, and preferably reversible, ship modifications and minimal personnel requirements for operations and maintenance; and
  • Packaging the system to fit into the limited space aboard ships.

DARPA plans to roll out TERN in three phases over approximately 40 months, culminating in a full-scale launch and recovery demonstration.

“We’re trying to rethink how the ship, UAV and launch and recovery domains ñ which have traditionally worked in parallel ñ can synergistically collaborate to help achieve the vision of base-independent operations for maritime or overland missions,” Patt said.




All of this week's top headlines to your email every Friday.


 
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>