Tech

March 6, 2013

Lockheed Martin receives $71 million long range anti-ship missile contract from DARPA

lm-darpa1Lockheed Martin has received a $71 million Long Range Anti-Ship Missile modification contract from the Defense Advanced Research Projects Agency to conduct air- and surface-launched flight tests and other risk reduction activities.

Under this contract, an additional air-launched LRASM flight test will be conducted from a B-1B in 2013. There are already two air-launched flight tests scheduled for this year as part of the Phase 2 LRASM contract awarded in 2010.

The contract also includes two surface-launched LRASM flight tests scheduled for 2014. Risk reduction efforts, such as electromagnetic compatibility testing of the missile and follow-on captive carry sensor suite missions, are also included under the contract.

LRASM is an autonomous, precision-guided anti-ship standoff missile based on the successful JASSM-ER, and is designed to meet the needs of U.S. Navy and Air Force warfighters. LRASM is in development with the Defense Advanced Research Projects Agency and the Office of Naval Research.

“This contract modification furthers the development of LRASM as we are committed to provide the Navy with an offensive anti-surface weapon alternative that is compatible with multiple platforms,” said Mike Fleming, LRASM air-launched program manager at Lockheed Martin Missiles and Fire Control.

Lockheed Martin is also investing internal research and development funds in LRASM’s shipboard integration with the Weapon Control System and MK 41 Vertical Launching System. As part of this investment, Lockheed Martin successfully demonstrated the mission planning of a LRASM-based OASuW capability using a simulated surface ship Weapon Control System.

lm-darpa2

“Our company investment in shipboard integration, combined with the new surface-launch flight tests, will provide an integrated OASuW solution compatible with surface ships,” said Scott Callaway, LRASM surface-launched program manager at Lockheed Martin Missiles and Fire Control.

Armed with a proven penetrator and blast-fragmentation warhead, LRASM cruises autonomously, day or night, in all weather conditions. The missile employs a multi-modal sensor, weapon data link, and an enhanced digital anti-jam Global Positioning System to detect and destroy specific targets within a group of ships.

Lockheed Martin Missiles and Fire Control is a 2012 recipient of the U.S. Department of Commerce’s Malcolm Baldrige National Quality Award for performance excellence. The Malcolm Baldrige Award represents one of the highest honors that can be awarded to American companies for achievement in leadership, strategic planning, customer relations, measurement, analysis, workforce excellence, operations and business results.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA photograph

NASA, partners test unmanned aircraft systems

NASA photograph NASA’s Ikhana is being used to test a system that will allow uncrewed aircraft to fly routine operations within the National Airspace System. NASA, working with government and industry partners, is testing...
 
 
NASA photograph

NASA-developed air traffic management tool flies into use

NASA photograph NASA Future Flight Central is a national Air Traffic Control/Air Traffic Management (ATC/ATM) simulation facility. The two-story facility offers a 360-degree full-scale, real-time simulation of an airport, where...
 
 
NASA photograph

Robotics teams prepare to compete for $1.5 million in NASA Challenge

NASA photograph The Los Angeles team Survey’s robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at t...
 

 

NASA invests in future of aviation with supersonic research projects

Quieter, greener supersonic travel is the focus of eight studies selected by NASAís Commercial Supersonic Technology Project to receive more than $2.3 million in funding for research that may help overcome the remaining barriers to commercial supersonic flight. The research, which will be conducted by universities and industry, will address sonic booms and high-altitude emissions...
 
 
afrl-sensors

Sensors Directorate co-sponsors autonomous aerial vehicle competition

Members from the University of Toledo, Ohio, team make adjustments to their multirotor aircraft prior to the autonomous aerial vehicle competition. The Air Force Research Laboratory Sensors Directorate hosted the event April 28...
 
 
NASA photograph by David C. Bowman

NASA’s Langley Research Center named Vertical Flight Heritage Site

NASA photograph by David C. Bowman In a May 8ceremony, NASA’s Langley Research Center in Hampton, Virginia, was formally designated a Vertical Flight Heritage Site by the American Helicopter Society (AHS) International. F...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>