Business

March 15, 2013

Northrop Grumman’s CIP processor successfully handles new Global Hawk data on testbed

Northrop Grumman’s Common Imagery Processor has demonstrated an important new capability by processing Global Hawk Block 40 data on the Distributed Common Ground System – Imagery (DCGS-I) testbed.

A live flight event late last year marked the first time that Global Hawk Block 40 data was successfully received, processed and disseminated on the DCGS-I testbed using the CIP. After the Global Hawk platform transmitted the newest Block 40 concurrent modes data to the testbed, the CIP processed and transmitted this data to other downstream ground station components for viewing and exploitation.

As the primary sensor processing element of the DCGS-I testbed based in China Lake, Calif., the CIP accepts airborne imagery data, processes it into an exploitable image and then outputs the image to other elements within the testbed. The CIP is the standard image processor used by the U.S. Department of Defense (DOD). The CIP also helps coalition partners to consolidate redundant and stovepiped processing systems.

The CIP’s latest software allowed for the newest synthetic aperture radar (SAR) imagery mode to be processed while simultaneously passing the ground moving target indicator data on to another system for processing. The CIP is the only platform capable of processing concurrent SAR data.

“Northrop Grumman continually provides soldiers an upper hand through the CIP’s innovative imagery capabilities that process images quickly and efficiently,” said Ed Bush, vice president of Northrop Grumman’s C4ISR Networked Systems business unit. “Additionally, the program reflects our open architecture approach and quick fielding of integrated software-based systems through the use of commercial and government off-the-shelf components.”

The CIP has been involved in numerous integration and test activities for many platforms and sensors. This includes Empire Challenge, an intelligence, surveillance and reconnaissance demonstration that promoted interoperability between U.S. and coalition Distributed Common Ground System assets.

Since 2000, the CIP has applied its critical ability to ingest data via the Common Data Link to serve as the main imagery processor of the DCGS-I testbed. The DOD uses the DCGS-I testbed to evaluate new intelligence, surveillance and reconnaissance technologies in an operational environment. The testbed has been an active participant in ongoing block upgrades for the Northrop Grumman-developed Global Hawk unmanned aircraft.

Additionally, Northrop Grumman offers the virtualized Common Imagery Processor, also referred to as vCIP, a cost-saving, software-only processing upgrade to the CIP. Already owned by the U.S. government, this architecture allows processing capability to be hosted on a customer’s Linux computer environment and eliminates new hardware costs. Software functionality includes all current sensor processing modes and enhancements already available in the CIP software baseline along with the latest compliance registration afforded by the Joint Interoperability Test Command.

 




All of this week's top headlines to your email every Friday.


 
 

 

Northrop Grumman sets new greenhouse gas emission reduction goal of 30 percent by 2020

Northrop Grumman announced April 22 its commitment to reduce greenhouse gas emissions by 30 percent from 2010 levels by 2020, as part of its commemoration of Earth Day.   “Northrop Grumman is dedicated to top performance in environmental sustainability,” said Wes Bush, chairman, chief executive officer and president. “This new goal sets the bar significantly...
 
 

Lockheed Martin demonstrates enhanced ground control system, software for small UAV

Lockheed Martin’s Group 1 family of unmanned aircraft systems is migrating to enhanced automation capabilities using its Kestrelô “Fly Light” flight control systems and industry-leading mobile Ground Control Station software. The increased automation allows operators to focus on executing the mission, rather than flying various aircraft. Earlier this year, Lockheed MartinR...
 
 

U.S. Navy awards General Dynamics $33 million to operate, maintain military sealift ships

The U.S. Navy has awarded General Dynamics American Overseas Marine LLC a $32.7 million contract modification to operate and maintain seven large, medium-speed, roll-on / roll-off ships for the Military Sealift Command. AMSEA is a wholly owned subsidiary of General Dynamics. Under the terms of the modification, AMSEA will provide services including crewing, engineering, maintenance,...
 

 

US Navy deploys Standard Missile-3 Block IB for first time

In partnership with the Missile Defense Agency, the U.S. Navy deployed the second-generation Standard Missile-3 Block IB made by Raytheon for the first time, initiating the second phase of the Phased Adaptive Approach. “The SM-3 Block IB’s completion of initial operational testing last year set the stage for a rapid deployment to theater,” said Dr....
 
 

International customer signs agreement for Raytheon’s TOW missiles

An international customer signed an agreement with the U.S. government for a foreign military sale of tube-launched, optically tracked, wireless-guided (TOW) missiles to be supplied by Raytheon in a deal valued at approximately $750 million. Raytheon plans to deliver nearly 14,000 TOW missiles to the customer over a three-year period beginning in 2015. A resulting...
 
 

General Dynamics opens new radio testing lab for MUOS satellite-ground station communications

General Dynamics C4 Systems has opened the MUOS Radio Testing Lab at its Scottsdale, Ariz., location. The U.S. Navy-approved laboratory is one of two that supports testing for radio-terminals intending to connect with the MUOS space-ground network. The lab is equipped with hardware and software that simulates the radio’s connectivity with the MUOS ground network....
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>