Space

March 18, 2013

NASA’s Webb Telescope gets its wings

A massive backplane that will hold the primary mirror of NASA’s James Webb Space Telescope nearly motionless while it peers into space is another step closer to completion with the recent assembly of the support structure’s wings.

The wings enable the mirror, made of 18 pieces of beryllium, to fold up and fit inside a 16.4-foot (5-meter) fairing on a rocket, and then unfold to 21 feet in diameter after the telescope is delivered to space. All that is left to build is the support fixture that will house an integrated science instrument module, and technicians will connect the wings and the backplane’s center section to the rest of the observatory. The center section was completed in April 2012.

“This is another milestone that helps move Webb closer to its launch date in 2018,” said Geoff Yoder, NASA’s James Webb Space Telescope program director, NASA Headquarters, Washington.

Designed, built and set to be tested by ATK at its facilities in Magna, Utah, the wing assemblies are extremely complex, with 900 separate parts made of lightweight graphite composite materials using advanced fabrication techniques. ATK assembled the wing assemblies like a puzzle with absolute precision. ATK and teammate Northrop Grumman of Redondo Beach, Calif., completed the fabrication.

“We will measure the accuracy down to nanometers – it will be an incredible engineering and manufacturing challenge,” said Bob Hellekson, ATK’s Webb Telescope program manager. “With all the new technologies that have been developed during this program, the Webb telescope has helped advance a whole new generation of highly skilled ATK engineers, scientists and craftsmen while helping the team create a revolutionary telescope.”

When fully assembled, the primary mirror backplane support structure will measure about 24 feet by 21 feet and weigh more than 2,000 pounds. The backplane must be very stable, both structurally and thermally, so it does not introduce changes in the primary mirror shape, and holds the instruments in a precise position with respect to the telescope. While the telescope is operating at a range of extremely cold temperatures, from minus 406 to minus 360 degrees Fahrenheit, the backplane must not vary more than 38 nanometers (about one one-thousandth the diameter of a human hair). The thermal stability requirements for the backplane are unprecedented.

“Our ATK teammates demonstrated the thermal stability on test articles before building the wing assemblies with the same design, analysis, and manufacturing techniques. One of the test articles ATK built and tested is actually larger than a wing,” said Charlie Atkinson, deputy Webb Optical Telescope Element manager for Northrop Grumman in Redondo Beach, Calif. “The mirrors are attached to the wings, as well as the rest of the backplane support structure, so the alignment is critical. If the wings distort, then the mirror distorts, and the images formed by the telescope would be distorted.”

The James Webb Space Telescope is the successor to NASA’s Hubble Space Telescope. It will be the most powerful space telescope ever built and observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA image

NASA’s newest Mars mission spacecraft enters orbit around red planet

NASA image This animation depicts NASAís Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft orbiting Mars. NASA’s Mars Atmosphere and Volatile Evolution spacecraft successfully entered Mars’ orbit at 10:24 p...
 
 
nasa-mars-website

NASA launches new citizen science website

Opens challenge to participate in future Mars missions NASA announced Sept. 20 the opening of registration for its Mars Balance Mass Challenge and the launch of its new website, NASA Solve, at the World Maker Faire in New York....
 
 
NASA Television

NASA cargo launches to space station aboard SpaceX resupply mission

NASA Television A SpaceX Falcon 9 rocket with a Dragon cargo spacecraft on top launches from Cape Canaveral Air Force Stationís Space Launch Complex-40 in Florida at 1:52 a.m., EDT, Sept. 21, 2014. The Dragon is carrying more ...
 

 
Lockheed Martin photograph

Lockheed Martin successfully mates NOAA GOES-R satellite modules

Lockheed Martin photograph Lockheed Martin successfully mated together the large system and propulsion modules of the first GOES-R series weather satellite at the companyís Space Systems facilities near Denver, Colo. A team of...
 
 
Image courtesy of NASA/GSFC

NASA Mars spacecraft ready for Sept. 21 orbit insertion

NASA’s Mars Atmosphere and Volatile Evolution spacecraft is nearing its scheduled Sept. 21 insertion into Martian orbit after completing a 10-month interplanetary journey of 442 million miles. Flight Controllers at Lockheed M...
 
 

Lockheed Martin-built CLIO satellite successfully launched

The U.S. government’s CLIO satellite, designed and built by Lockheed Martin, was successfully launched today from Cape Canaveral Air Force Station, Fla. Lift-off occurred at 6:10 p.m., MDT, aboard a United Launch Alliance Atlas V launch vehicle. Initial contact with the satellite was confirmed at 9:08 p.m., MDT. The CLIO system is based on innovative...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>