Space

March 18, 2013

NASA’s Webb Telescope gets its wings

A massive backplane that will hold the primary mirror of NASA’s James Webb Space Telescope nearly motionless while it peers into space is another step closer to completion with the recent assembly of the support structure’s wings.

The wings enable the mirror, made of 18 pieces of beryllium, to fold up and fit inside a 16.4-foot (5-meter) fairing on a rocket, and then unfold to 21 feet in diameter after the telescope is delivered to space. All that is left to build is the support fixture that will house an integrated science instrument module, and technicians will connect the wings and the backplane’s center section to the rest of the observatory. The center section was completed in April 2012.

“This is another milestone that helps move Webb closer to its launch date in 2018,” said Geoff Yoder, NASA’s James Webb Space Telescope program director, NASA Headquarters, Washington.

Designed, built and set to be tested by ATK at its facilities in Magna, Utah, the wing assemblies are extremely complex, with 900 separate parts made of lightweight graphite composite materials using advanced fabrication techniques. ATK assembled the wing assemblies like a puzzle with absolute precision. ATK and teammate Northrop Grumman of Redondo Beach, Calif., completed the fabrication.

“We will measure the accuracy down to nanometers – it will be an incredible engineering and manufacturing challenge,” said Bob Hellekson, ATK’s Webb Telescope program manager. “With all the new technologies that have been developed during this program, the Webb telescope has helped advance a whole new generation of highly skilled ATK engineers, scientists and craftsmen while helping the team create a revolutionary telescope.”

When fully assembled, the primary mirror backplane support structure will measure about 24 feet by 21 feet and weigh more than 2,000 pounds. The backplane must be very stable, both structurally and thermally, so it does not introduce changes in the primary mirror shape, and holds the instruments in a precise position with respect to the telescope. While the telescope is operating at a range of extremely cold temperatures, from minus 406 to minus 360 degrees Fahrenheit, the backplane must not vary more than 38 nanometers (about one one-thousandth the diameter of a human hair). The thermal stability requirements for the backplane are unprecedented.

“Our ATK teammates demonstrated the thermal stability on test articles before building the wing assemblies with the same design, analysis, and manufacturing techniques. One of the test articles ATK built and tested is actually larger than a wing,” said Charlie Atkinson, deputy Webb Optical Telescope Element manager for Northrop Grumman in Redondo Beach, Calif. “The mirrors are attached to the wings, as well as the rest of the backplane support structure, so the alignment is critical. If the wings distort, then the mirror distorts, and the images formed by the telescope would be distorted.”

The James Webb Space Telescope is the successor to NASA’s Hubble Space Telescope. It will be the most powerful space telescope ever built and observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA illustration

NASA awards radiation challenge winners, launches next round

NASA illustration This illustration depicts our heliosphere, showing the approximate locations of Voyager 1 and Voyager 2 spacecraft. Galactic cosmic rays originate outside the heliosphere and stream in uniformly from all direc...
 
 
NASA photograph

Celebrate with NASA as agency commemorates Hubble’s 25th anniversary

NASA’s Hubble Space Telescope is turning 25 this year. The observatory has transformed our understanding of our solar system and beyond, and helped us find our place among the stars. NASA is celebrating the Hubble Space T...
 
 

ULA unveils America’s new rocket

https://www.youtube.com/watch?v=emmeil-0u5k&feature=player_embedded United Launch Alliance unveiled its Next Generation Launch System April 13 at the 31st Space Symposium. The new rocket, Vulcan, will transform the future of space by making launch services more affordable and accessible. The NGLS brings together decades of experience on ULA’s reliable Atlas and Delta vehicles, combin...
 

 
NASA/JHU APL/Carnegie Institution of Washington

NASA spacecraft achieves unprecedented success studying Mercury

NASA/JHU APL/Carnegie Institution of Washington NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft traveled more than six and a half years before it was inserted into orbit around Merc...
 
 

NASA selects American small business, research institution projects for further development

NASA has selected 149 research and technology proposals from American small businesses and research institutions that will enable NASA’s future missions into the solar system and beyond while benefiting America’s technology-driven economy right here on Earth. The selected proposals now will enter into negotiations for contract awards as part of Phase II of the agency’s...
 
 

NASA’s New Horizons spacecraft nears historic encounter with Pluto

NASA’s New Horizons spacecraft is three months from returning to humanity the first-ever close up images and scientific observations of distant Pluto and its system of large and small moons. “Scientific literature is filled with papers on the characteristics of Pluto and its moons from ground based and Earth orbiting space observations, but we’ve never...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>