Space

March 18, 2013

NASA’s Webb Telescope gets its wings

A massive backplane that will hold the primary mirror of NASA’s James Webb Space Telescope nearly motionless while it peers into space is another step closer to completion with the recent assembly of the support structure’s wings.

The wings enable the mirror, made of 18 pieces of beryllium, to fold up and fit inside a 16.4-foot (5-meter) fairing on a rocket, and then unfold to 21 feet in diameter after the telescope is delivered to space. All that is left to build is the support fixture that will house an integrated science instrument module, and technicians will connect the wings and the backplane’s center section to the rest of the observatory. The center section was completed in April 2012.

“This is another milestone that helps move Webb closer to its launch date in 2018,” said Geoff Yoder, NASA’s James Webb Space Telescope program director, NASA Headquarters, Washington.

Designed, built and set to be tested by ATK at its facilities in Magna, Utah, the wing assemblies are extremely complex, with 900 separate parts made of lightweight graphite composite materials using advanced fabrication techniques. ATK assembled the wing assemblies like a puzzle with absolute precision. ATK and teammate Northrop Grumman of Redondo Beach, Calif., completed the fabrication.

“We will measure the accuracy down to nanometers – it will be an incredible engineering and manufacturing challenge,” said Bob Hellekson, ATK’s Webb Telescope program manager. “With all the new technologies that have been developed during this program, the Webb telescope has helped advance a whole new generation of highly skilled ATK engineers, scientists and craftsmen while helping the team create a revolutionary telescope.”

When fully assembled, the primary mirror backplane support structure will measure about 24 feet by 21 feet and weigh more than 2,000 pounds. The backplane must be very stable, both structurally and thermally, so it does not introduce changes in the primary mirror shape, and holds the instruments in a precise position with respect to the telescope. While the telescope is operating at a range of extremely cold temperatures, from minus 406 to minus 360 degrees Fahrenheit, the backplane must not vary more than 38 nanometers (about one one-thousandth the diameter of a human hair). The thermal stability requirements for the backplane are unprecedented.

“Our ATK teammates demonstrated the thermal stability on test articles before building the wing assemblies with the same design, analysis, and manufacturing techniques. One of the test articles ATK built and tested is actually larger than a wing,” said Charlie Atkinson, deputy Webb Optical Telescope Element manager for Northrop Grumman in Redondo Beach, Calif. “The mirrors are attached to the wings, as well as the rest of the backplane support structure, so the alignment is critical. If the wings distort, then the mirror distorts, and the images formed by the telescope would be distorted.”

The James Webb Space Telescope is the successor to NASA’s Hubble Space Telescope. It will be the most powerful space telescope ever built and observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 24, 2015

News: More than $1 billion in U.S. emergency reconstruction aid goes missing in Afghanistan - A total of $1.3 billion that the Pentagon shipped to its force commanders in Afghanistan between 2004 and 2014 for the most critical reconstruction projects can’t be accounted for by the Defense Department, 60 percent of all such spending under an...
 
 

News Briefs April 24, 2015

German defense minister: widely used rifle has no future A widely used assault rifle has “no future” with the German military in its current form, Germany’s defense minister said April 22, escalating a dispute over the weapon’s alleged shortcomings. Ursula von der Leyen said last month that a study showed the G36 rifle has a...
 
 
Army photograph

Composites key to tougher, lighter armaments

Army photograph XM-360 test firing at Aberdeen Proving Ground, Md., in 2007, is shown. The Army is on the cusp of revolutionizing materials that go into armament construction, making for stronger, lighter and more durable weapo...
 

 

Northrop Grumman signs long-term agreement with Raytheon

Northrop Grumman has entered a long-term agreement with Raytheon to supply its LN-200 Inertial Measurement Unit for Raytheon optical targeting systems. The long-term agreement with Raytheon’s Space and Airborne Systems business extends through 2018. The LN-200 provides camera stabilization on optical targeting systems that conduct long-range surveillance and target acquisition for various...
 
 

NTTR supports first F-35B integration into USMC’s weapons school exercise

The Nevada Test and Training Range was part of history April 21, when four U.S. Marine Corps-assigned F-35B Lightning IIs participated in its first Marine Corps’ Final Exercise of the Weapons and Tactics Instructor course on the NTTR’s ranges. The Final Exercise, or FINEX, is the capstone event to the U.S. Marine Corps Marine Aviation...
 
 
AAR-Textron

AAR awarded new contract from Bell Helicopter Textron to support T64 engines

AAR announced April 22 that Bell Helicopter Textron Inc. awarded its Defense Systems & Logistics business unit a contract providing warehouse and logistics services in support of upgrading T64 engines for the Bell V-280 Val...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>