Space

March 27, 2013

XCOR Aerospace announces significant propulsion milestone on Lynx suborbital vehicle

The XCOR Lynx main rocket engine, shown here being tested in Mojave, Calif., is powered by XCOR’s unique and groundbreaking rocket propellant piston pumps. This breakthrough propulsion system is the foundation for fully reusable spacecraft that can fly multiple times per day, every day. XCOR is building the Lynx, a fully reusable suborbital spacecraft.

MOJAVE, Calif. — XCOR Aerospace March 26 announced a first in aviation and space history, the firing of a full piston pump-powered rocket engine.

This breakthrough is the foundation for fully reusable spacecraft that can fly multiple times per day, every day. It is a game changing technology that has the power to fundamentally alter the way we as a society view, visit, and utilize the abundant resources around our planet and in our solar system.

The initial portion of XCOR’s pump test program culminated in a 67-second engine run with the propulsion system mated to the flight weight Lynx fuselage. After the installation of the flight sized liquid oxygen tank, the next test sequence will extend the engine run duration to the full powered flight duration of the Lynx Mark I suborbital vehicle.

“Through use of our proprietary rocket propellant piston pumps we deliver both kerosene and liquid oxygen to our rocket engines and eliminate the need for heavy, high-pressure fuel and oxidizer tanks. It also enables our propulsion system to fly multiple times per day and last for tens of thousands of flights,” said XCOR Chief Executive Officer Jeff Greason. “This is one more step toward a significant reduction in per-flight cost and turnaround time, while increasing overall flight safety.”

Boeing provided additional funding to complete the XCOR test sequence and advance low-cost rocket propulsion technology. The demonstrated results of the full pump fed engine firing for extended periods helps to ensure the technology migrates into broader global applications.

“Unlike the expensive and finicky turbopumps on today’s rocket propulsion systems, XCOR’s piston pumps are designed to be as powerful in their thrust class as turbines, but as easy to manufacture, maintain and operate as an automotive engine,” said XCOR Chief Operating Officer Andrew Nelson. “This is the culmination of a 12 year program to develop this unique technology. The kerosene piston pump has been successfully flight-proven during our 40-flight test program on the X-Racer aircraft. We’ll be entering another flight test program soon with Lynx and these pumps and engines will power XCOR and the industry to the next level.”

 




All of this week's top headlines to your email every Friday.


 
 

 
ball-satelilte

Ball Aerospace integrates two of five instruments for JPSS-1

Two of the five instruments scheduled to fly on the nation’s next polar-orbiting weather satellite, NOAA’s Joint Polar Satellite System -1, have been integrated to the spacecraft bus by prime contractor Ball Aerospa...
 
 
NASA/JPL photograph

NASA’s Dawn spacecraft captures best-ever view of dwarf planet

Zoomed out – PIA19173 Ceres appears sharper than ever at 43 pixels across, a higher resolution than images of Ceres taken by the NASA’s Hubble Space Telescope in 2003 and 2004. NASA’s Dawn spacecraft has retur...
 
 
ATK

ATK completes installation of world’s largest solid rocket motor for ground test

ATK The first qualification motor for NASA’s Space Launch Systems booster is installed in ATK’s test stand in Utah – ready for a March 11 static-fire test. NASA and ATK have completed installing the first Spac...
 

 
ULA photograph

Third Lockheed Martin-built MUOS satellite launched, responding to commands

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Complex 41 at...
 
 
ULA photograph

ULA successfully launches Navy’s Mobile User Objective System-3

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System (MUOS) satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Comple...
 
 

Aerojet Rocketdyne Propulsion supports launch, flight of third MUOS satellite

Aerojet Rocketdyne played a critical role in successfully placing the third of five planned Mobile User Objective System (MUOS-3) satellites, designed and built by Lockheed Martin, into orbit for the U.S. Navy. The mission was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket, with five Aerojet...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>