Space

April 5, 2013

Hubble breaks record in search for farthest supernova

hubble-supernova
NASA’s Hubble Space Telescope has found the farthest supernova so far of the type used to measure cosmic distances. Supernova UDS10Wil, nicknamed SN Wilson after American President Woodrow Wilson, exploded more than 10 billion years ago.

SN Wilson belongs to a special class called Type Ia supernovae. These bright beacons are prized by astronomers because they provide a consistent level of brightness that can be used to measure the expansion of space. They also yield clues to the nature of dark energy, the mysterious force accelerating the rate of expansion.

“This new distance record holder opens a window into the early universe, offering important new insights into how these stars explode,” said David O. Jones of Johns Hopkins University in Baltimore, Md., an astronomer and lead author on the paper detailing the discovery. “We can test theories about how reliable these detonations are for understanding the evolution of the universe and its expansion.”

The discovery was part of a three-year Hubble program, begun in 2010, to survey faraway Type Ia supernovae and determine whether they have changed during the 13.8 billion years since the explosive birth of the universe. Astronomers took advantage of the sharpness and versatility of Hubble’s Wide Field Camera 3 to search for supernovae in near-infrared light and verify their distance with spectroscopy. Leading the work is Adam Riess of the Space Telescope Science Institute in Baltimore, Md., and Johns Hopkins University.

Finding remote supernovae provides a powerful method to measure the universe’s accelerating expansion. So far, Riess’s team has uncovered more than 100 supernovae of all types and distances, looking back in time from 2.4 billion years to more than 10 billion years. Of those new discoveries, the team has identified eight Type Ia supernovae, including SN Wilson, that exploded more than 9 billion years ago.

“The Type Ia supernovae give us the most precise yardstick ever built, but we’re not quite sure if it always measures exactly a yard,” said team member Steve Rodney of Johns Hopkins University. “The more we understand these supernovae, the more precise our cosmic yardstick will become.”

Although SN Wilson is only 4 percent more distant than the previous record holder, it pushes roughly 350 million years farther back in time. A separate team led by David Rubin of the U.S. Energy Department’s Lawrence Berkeley National Laboratory in California announced the previous record just three months ago.

Astronomers still have much to learn about the nature of dark energy and how Type Ia supernovae explode. By finding Type Ia supernovae so early in the universe, astronomers can distinguish between two competing explosion models. In one model the explosion is caused by a merger between two white dwarfs. In another model, a white dwarf gradually feeds off its partner, a normal star, and explodes when it accretes too much mass.

The team’s preliminary evidence shows a sharp decline in the rate of Type Ia supernova blasts between roughly 7.5 billion years ago and more than 10 billion years ago. The steep drop-off favors the merger of two white dwarfs because it predicts that most stars in the early universe are too young to become Type Ia supernovae.

“If supernovae were popcorn, the question is how long before they start popping?” Riess said. “You may have different theories about what is going on in the kernel. If you see when the first kernels popped and how often they popped, it tells you something important about the process of popping corn.”

Knowing the type of trigger for Type Ia supernovae also will show how quickly the universe enriched itself with heavier elements such as iron. These exploding stars produce about half of the iron in the universe, the raw material for building planets, and life.

The team’s results have been accepted for publication in an upcoming issue of The Astrophysical Journal.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Md., conducts Hubble science operations. The Association of Universities for Research in Astronomy Inc., in Washington operates STScI.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>