Tech

April 5, 2013

Virtual window provides vital view for soldiers

army-virtual1
DETROIT ARSENAL, Mich. — Army researchers are looking for ways to give soldiers a look outside using cameras and monitors.

To provide better situational awareness for Bradley Fighting Vehicle Infantrymen, a cross-discipline team of U.S. Army Research, Development and Engineering Command engineers is developing the Virtual window – a video display mounted to the interior of the rear ramp that provides the soldiers a comprehensive environmental view before they dismount the vehicle.

Contemporary military vehicles, such as the family of Mine-Resistant Ambush-Protected vehicles, have several transparent armored windows soldiers can use to survey the area around them. When Soldiers ride in a Bradley, they’re surrounded by protective armor and cannot see the area around them or know what they will encounter outside the vehicle once the rear ramp is lowered and they deploy.
army-virtual2
The virtual window display helps minimize surprise when the ramp descends and the crew deploys out from the vehicle. Soldiers can step on the reinforced screen without damaging it as they exit the vehicle.

“We integrated a high-definition camera onto the rear of a Bradley Infantry Fighting Vehicle, and then integrated a commercial 46-inch LED display into the ramp,” said Tank Automotive Research, Development and Engineering Center engineer Andrew Kerbrat. “The video feed from the camera appears on the display, which gives soldiers the ability to see outside the vehicle with the ramp closed. This visual situational awareness could be a game-changer in how the Soldier proceeds out of the vehicle.”
army-virtual3
To generate ideas for the Virtual window design, the project team organized an Innovations Solutions training event consisting of design students and professors from the College for Creative Studies in Detroit, plus Army Warrant Officers from the U.S. Army Ordnance School who provided their experience and technical knowledge to the students who created numerous sketches for the virtual window concept. A second Innovations Solutions Workshop is being planned for this May.

As a follow-up to the workshop, the team has already started working on Virtual Window 2, which expands the system’s capabilities and will be integrated into and tested on a Stryker Infantry Carrier Vehicle.

Possible enhancements for the Virtual Window 2 phase could involve driver and commander crew stations connected to the new display system to provide broader levels of situational awareness for the four-member squad, including:

  • 360-degree visual situational awareness through electro-optical sensors.
  • Thermal viewer through a commander’s Gimbal for medium range situational awareness (CITV-like) capability
  • Unmanned Ground Vehicle Command and Control with video feed displayed on the Virtual window
  • Video feed from a remote Soldier camera fed back to an ICV and displayed on screen
  • Remote mission planning from a tablet provided to the virtual window
  • Force XXI Battle Command Brigade and Below capability displays

“We are trying to move the technology toward the idea of the vehicle as a member of the squad,” Kerbrat said.

The technology concept can be applied to other vehicles as well, he said.

“Not all vehicles would be able to take a wholly integrated system, but some subsystem technologies have relevance in current and future vehicles,” he said. “For example, we’re using versions of the Soldier Machine Interfaces for many projects ranging from command and control of small unmanned ground vehicles all the way to integration into MRAP vehicles involved in today’s fight.”

The project involves an integrated team effort that bridges several TARDEC technical areas, including Ground Systems Survivability, Ground Vehicle Robotics, Vehicle Electronics and Architecture, Ground Vehicle Power and Mobility’s battery team and the Center for Systems Integration.

The group worked with the Communications Electronics Research, Development and Engineering Center’s Night Vision and Electronic Sensors Directorate, provided the sensor suite that allowed the team to employ many capabilities for the Virtual Window 2 phase. CERDEC also helped develop and integrate base technologies for the system.

TARDEC’s Ground Systems Engineering, Assessment and Assurance team provided vehicle information for Virtual Window 1 and set up the first Innovations Solutions Workshop, Kerbrat said. Also, the Maintenance Operations Center provided training space and storage, and assisted with related maintenance issues.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines December 17, 2014

News: U.S. Air Force tanker platform slated for year-end debut - Boeing is planning for first flight of its 767-2C – upon which the U.S. Air Force’s new KC-46 tanker will be based – by year’s end, six months late. Northrop Grumman wins $657.4 million deal to supply drones to South Korea - Northrop Grumman has won...
 
 

NASA launches new Micro-g NExT for undergraduates

NASA is offering undergraduate students an opportunity to participate in a new microgravity activity called Micro-g Neutral Buoyancy Experiment Design Teams. The deadline for proposals is Jan. 28, 2015. Micro-g NExT challenges students to work in teams to design and build prototypes of spacewalking tools to be used by astronauts for spacewalk training in the...
 
 
launch1

Storm fails to quench liftoff of secret reconnaissance satellite

The fiery launch of an Atlas V (541), among the most powerful of the venerable Atlas family, briefly dispelled the gloom over Californiaís Central Coast on the evening of Dec. 12. A team of personnel from United Launch Allianc...
 

 
Coast Guard photograph

Navy demonstrates unmanned helicopter operations aboard Coast Guard cutter

http://static.dvidshub.net/media/video/1412/DOD_102145893/DOD_102145893-512×288-442k.mp4 Coast Guard photograph An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast...
 
 
GPS-OCX

GPS III, OCX successfully demonstrate key satellite command, control capabilities

Lockheed Martin and Raytheon successfully completed the fourth of five planned launch and early orbit exercises to demonstrate new automation capabilities, information assurance and launch readiness of the worldís most powerfu...
 
 

Aerojet Rocketdyne successfully demonstrates 3D printed rocket propulsion system for satellites

Aerojet Rocketdyne has successfully completed a hot-fire test of its MPS-120 CubeSat High-Impulse Adaptable Modular Propulsion System. The MPS-120 is the first 3D-printed hydrazine integrated propulsion system and is designed to provide propulsion for CubeSats, enabling missions not previously available to these tiny satellites. The project was funded out of the NASA Office of Chief...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>