Space

April 10, 2013

Lockheed Martin team completes Delta PDR for Next GPS III satellite capabilities

Lockheed Martin has successfully completed a Delta Preliminary Design Review for the next Global Positioning System III satellite vehicles planned under the U.S. Air Force’s GPS III program.

The GPS III program will affordably replace aging GPS satellites, while improving capability to meet the evolving demands of military, commercial and civilian users. GPS III satellites will deliver three times better accuracy and up to eight times improved anti-jamming signal power while enhancing the spacecraft’s design life and adding a new civil signal designed to be interoperable with international global navigation satellite systems.

The Air Force plans to purchase up to 32 GPS III satellites. Lockheed Martin is currently under contract for production of the first four GPS III satellites, and has received advanced procurement funding for long-lead components for the fifth, sixth, seventh and eighth satellites. The successful dPDR addresses design modifications, agreed upon by the Air Force and the Lockheed Martin-lead industry team, which will provide new capabilities for GPS III Space Vehicle 9 (SV09) and beyond, including the addition of a search and rescue satellite payload and a Laser Retroreflector Array (LRA). An innovative new waveform generator permits the addition of new navigation signals after launch to upgrade the constellation without the need to launch new satellites.

“We have worked very closely with the Air Force and GPS community to make GPS III the most affordable and lowest risk solution for bringing new capabilities to the GPS constellation. The design modifications from this dPDR address ways to further reduce Air Force launch costs by $50 million per satellite through dual launch of two GPS III space vehicles on a single booster,” said John Frye, Lockheed Martin’s GPS III capability and affordability insertion manager. “This successful dPDR milestone sets the stage to proceed with SV09 design maturation.”

From the beginning of the program, the Lockheed Martin team has remained focused on affordability for GPS III, all while working to ensure the enhanced satellite system can evolve to continue to meet the world’s global navigation and timing needs for the next 30 years. To help reduce risks and cut costs, the GPS III team developed a GPS Non-Flight Satellite Testbed, which serves as the program’s ground pathfinder and vehicle demonstrator for the first complete satellite. The entire GPS III development and production sequence utilizes the GNST to provide space vehicle design level validation; early verification of ground support and test equipment; and early confirmation and rehearsal of transportation operations.

Recent milestones provide a key indication the Lockheed Martin team is on track to deliver the first GPS III satellite, with its enhanced capabilities over current orbiting systems, for launch availability in 2014.

In February, the Lockheed Martin team successfully turned on power to the system module of the program’s first spacecraft, designated GPS III Space Vehicle 1 (SV01), demonstrating mechanical integration, validating the satellite’s interfaces and leading the way for electrical and integrated hardware-software testing. The satellite will complete its Assembly, Integration and Test (AI&T) in Lockheed Martin’s new GPS Processing Facility designed for efficient and affordable satellite production.

The GPS III team is led by the Global Positioning Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the GPS III prime contractor with teammates ITT Exelis, General Dynamics, Infinity Systems Engineering, Honeywell, ATK and other subcontractors. Air Force Space Command’s 2nd Space Operations Squadron (2SOPS), based at Schriever Air Force Base, Colo., manages and operates the GPS constellation for both civil and military users.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA illustration

NASA awards radiation challenge winners, launches next round

NASA illustration This illustration depicts our heliosphere, showing the approximate locations of Voyager 1 and Voyager 2 spacecraft. Galactic cosmic rays originate outside the heliosphere and stream in uniformly from all direc...
 
 
NASA photograph

Celebrate with NASA as agency commemorates Hubble’s 25th anniversary

NASA’s Hubble Space Telescope is turning 25 this year. The observatory has transformed our understanding of our solar system and beyond, and helped us find our place among the stars. NASA is celebrating the Hubble Space T...
 
 

ULA unveils America’s new rocket

https://www.youtube.com/watch?v=emmeil-0u5k&feature=player_embedded United Launch Alliance unveiled its Next Generation Launch System April 13 at the 31st Space Symposium. The new rocket, Vulcan, will transform the future of space by making launch services more affordable and accessible. The NGLS brings together decades of experience on ULA’s reliable Atlas and Delta vehicles, combin...
 

 
NASA/JHU APL/Carnegie Institution of Washington

NASA spacecraft achieves unprecedented success studying Mercury

NASA/JHU APL/Carnegie Institution of Washington NASA’s MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft traveled more than six and a half years before it was inserted into orbit around Merc...
 
 

NASA selects American small business, research institution projects for further development

NASA has selected 149 research and technology proposals from American small businesses and research institutions that will enable NASA’s future missions into the solar system and beyond while benefiting America’s technology-driven economy right here on Earth. The selected proposals now will enter into negotiations for contract awards as part of Phase II of the agency’s...
 
 

NASA’s New Horizons spacecraft nears historic encounter with Pluto

NASA’s New Horizons spacecraft is three months from returning to humanity the first-ever close up images and scientific observations of distant Pluto and its system of large and small moons. “Scientific literature is filled with papers on the characteristics of Pluto and its moons from ground based and Earth orbiting space observations, but we’ve never...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>