Business

April 12, 2013

Boeing X-48C research aircraft completes flight testing

boeing-x48
EDWARDS AIR FORCE BASE, Calif. – The Boeing X-48C research aircraft flew for the 30th and final time April 9, marking the successful completion of an eight-month flight-test program to explore and further validate the aerodynamic characteristics of the Blended Wing Body design concept.

All 30 flights were conducted at NASA’s Dryden Flight Research Center. The X-48C typically flew for approximately 30 minutes on most flights, reaching speeds of up to 140 miles per hour and attaining an altitude of about 10,000 feet. X-48C flight testing began Aug. 7, 2012.

“Working closely with NASA, we have been privileged throughout X-48 flight-testing to explore and validate what we believe is a significant breakthrough in the science of flight – and it has been a tremendous success for Boeing,” said Bob Liebeck, a Boeing Senior Technical Fellow and the company’s BWB program manager.

“We have shown that a BWB aircraft, which offers the tremendous promise of significantly greater fuel efficiency and reduced noise, can be controlled as effectively as a conventional tube-and-wing aircraft during takeoffs, landings and other low-speed segments of the flight regime,” Liebeck said.

The X-48C, designed by Boeing Research & Technology, built by Cranfield Aerospace Ltd., and flown in partnership with NASA and the U.S. Air Force Research Laboratory, is a scale model of a heavy-lift, subsonic vehicle that forgoes the conventional tube-and-wing airplane design in favor of a triangular tailless aircraft that effectively merges the vehicle’s wing and body. Boeing believes the concept could be developed in the next 15 to 20 years for military applications such as aerial refueling and cargo missions.

The X-48C is a modified version of the X-48B aircraft, which flew 92 times at NASA Dryden between 2007 and 2010. The X-48C is configured with two 89-pound thrust turbojet engines, instead of three 50-pound thrust engines on the B-model. In addition, the wingtip winglets were relocated inboard next to the engines on the C-model and the aft deck was extended about 2 feet at the rear.

“With the completion of X-48C flight testing, we have accomplished our goal of establishing a ground-to-flight database, and proving the low-speed controllability of concept throughout the flight envelope,” said Fay Collier, director of NASA’s Environmentally Responsible Aviation (ERA) project. “Both very quiet and efficient, the concept has shown promise for meeting all of NASA’s environmental goals for future aircraft designs.”

Boeing and NASA’s Aeronautics Research Mission Directorate funded the X-48 technology demonstration research. The effort was aligned with NASA’s ERA project, which has the goals to reduce fuel burn, emissions and noise of future aircraft.

Boeing and NASA will continue to develop Blended Wing Body technology, with the aspiration of developing a larger-scale, transonic BWB demonstrator in the future.

 




All of this week's top headlines to your email every Friday.


 
 

 

F-16V completes major capability milestone

The newest configuration of the F-16 Fighting Falcon, the F-16V, has reached a major capability milestone with the integration of a new Active Electronically Scanned Array radar. Completing this milestone on schedule demonstrates our ability to meet program commitments, said Roderick McLean, vice president and general manager of the F-16/F-22 Integrated Fighter Group at Lockheed...
 
 
Lockheed Martin photograph

Robots moving robots: Lockheed Martin conducts first fully autonomous mission

Lockheed Martin photograph A K-MAX unmanned helicopter delivers an SMSS unmanned ground vehicle during a fully autonomous mission demonstration at Fort Benning, Ga. A safety pilot was on board K-MAX but did not operate the cont...
 
 

Lockheed Martin introduces maritime test bed

Using a newly developed advanced maritime test bed, Lockheed Martin recently demonstrated how continually evolving technologies such as data fusion and predictive analytics can be used to share intelligence quickly and securely – even in limited bandwidth naval settings. This new software test platform, designed to mimic different naval environments at sea and ashore, allowed...
 

 

Aerojet Rocketdyne awarded defense contract for large scale additive manufacturing

Aerojet Rocketdyne was recently awarded a contract by Wright-Patterson Air Force Base, Ohio, through the Defense Production Act Title III Office for large-scale additive manufacturing development and demonstration. The contract will secure multiple large selective laser melting machines to develop liquid rocket engine applications for national security space launch services. Aerojet Rocketdyne ...
 
 

U.S. Navy to test, evaluate Lockheed Martin industrial exoskeletons

Lockheed Martin has received a contract through the National Center for Manufacturing Sciences for the U.S. Navy to evaluate and test two FORTIS exoskeletons. This marks the first procurement of Lockheed Martin’s exoskeletons for industrial use. Terms of the contract were not disclosed. The FORTIS exoskeleton is an unpowered, lightweight exoskeleton that increases an operator’s...
 
 
Northrop Grumman photograph by Alan Radecki

Northrop Grumman, Navy integrate manned, unmanned flight ops

https://www.youtube.com/watch?v=RqiOzO8yV4A&feature=youtu.be Northrop Grumman photograph by Alan Radecki The U.S. Navy’s unmanned X-47B conducts flight operations aboard the aircraft carrier USS Theodore Roosevelt (C...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>