Tech

April 12, 2013

NASA, Air Force seek next generation space processor program

NASA and the U.S. Air Force Research Laboratory in Albuquerque, N.M., are requesting research and development proposals to define the type of spacecraft computing needed for future missions.

Through a broad agency announcement, the Air Force Next Generation Space Processor Analysis Program is seeking two to four companies to perform a yearlong evaluation of advanced space based applications that would use spaceflight processors for the 2020-2030 timeframe.

“Computer processors and applications aboard spacecraft will need to transform dramatically to take advantage of computational leaps in technology and new mission needs,” said Michael Gazarik, associate administrator for NASA’s Space Technology Mission Directorate at the agency’s headquarters in Washington. “NASA’s Space Technology Program is teaming with the Air Force to develop the next generation spaceflight processor requirements and propose solutions to meet future high performance space computing needs in the upcoming decades.”

Processor applications could include autonomous pinpoint landing with hazard detection and avoidance during entry, descent and landing during moon or Mars missions; real-time segmented mirror control for large space-based telescopes; onboard real-time analysis of multi-megapixel-level hyperspectral image data; autonomous onboard situational analysis and real-time mission planning; and real-time mode-based spacecraft-level fault protection.

The broad agency announcement will involve a competitive selection process. The NASA and Air Force Research Laboratory Space Vehicles Directorate team plans to award a cost-reimbursement contract worth about $2 million to be shared by the selected companies during a period of one year.

Studies done in the first three months will determine and define the required computing performance for these advanced applications and compare their findings with the government’s preliminary requirements. Awardees then will have nine months to develop spaceflight processing architecture solutions to a set of NASA and Air Force requirements, based on progress and availability of funds.

Based on the results of the study effort, a chosen team may develop the spaceflight processor during a follow-on effort. A contract award of about $20 million during a period as long as four years could be made based on availability of funds. The intent would be to develop a spaceflight microprocessor capable of providing high-performance space computing capabilities required for advanced space missions through 2030.

To view the broad agency announcement, visit http://tinyurl.com/cd7fkjp.

 




All of this week's top headlines to your email every Friday.


 
 

 
University of Rhode Island photograph by Tom Glennon

NASA kicks off field campaign to probe ocean ecology, carbon cycle

University of Rhode Island photograph by Tom Glennon The Research Vessel Endeavor is the floating laboratory that scientists will use for the ocean-going portion of the SABOR field campaign this summer. NASA embarks this week o...
 
 
NASA photograph by Carla Thomas

NASA’s high-flying laser altimeter to check out summer sea ice, more

NASA photograph by Carla Thomas This summer, the Multiple Altimeter Beam Experimental Lidar, or MABEL, will fly above Alaska and the Arctic Ocean on one of NASA’s ER-2 high-altitude aircraft. Sea ice in summer looks dramatica...
 
 
SOFIA

Outer space to inner space: SOFIA inside Lufthansa Technik hangar

NASA photograph by Jeff Doughty NASA’s Stratospheric Observatory for Infrared Astronomy is shown inside the Lufthansa Technik hangar in Hamburg, Germany where it is beginning its decadal inspection. Flight, aircraft maint...
 

 
NASA photograph by Tony Landis

New life for an old bird: NASA’s F-15B test bed gets new engines

NASA photograph NASA’s F-15B flight research test bed carries shuttle thermal insulation panels on its underbelly during a research flight in 2005. NASA Armstrong’s F-15B aeronautics research test bed, a workhorse at th...
 
 
NASA photograph by Tom Tschida

Towed glider benefits from center’s new 3-D printer capability

NASA photograph by Tom Tschida The major components of NASA Armstrong’s new high-resolution 3-D additive manufacturing printer occupy a shelf in the center’s subscale aircraft research lab. Robert “Red” ...
 
 
NASA photograph by Emmett Given

NASA completes testing on 3-D printer

NASA photograph by Emmett Given United Space Alliance engineer Cynthia Azzarita, left, and Boeing Company engineer Chen Deng, members of the Human Factors Integration Team at NASA’s Johnson Space Center, conduct a “...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>