Space

April 22, 2013

NASA successfully launches three smart phone satellites

Three smartphones destined to become low-cost satellites rode to space Sunday aboard the maiden flight of Orbital Science Corp.’s Antares rocket from NASA’s Wallops Island Flight Facility in Virginia.

The trio of “PhoneSats” is operating in orbit, and may prove to be the lowest-cost satellites ever flown in space. The goal of NASA’s PhoneSat mission is to determine whether a consumer-grade smartphone can be used as the main flight avionics of a capable, yet very inexpensive, satellite.

Transmissions from all three PhoneSats have been received at multiple ground stations on Earth, indicating they are operating normally. The PhoneSat team at the Ames Research Center in Moffett Field, Calif., will continue to monitor the satellites in the coming days. The satellites are expected to remain in orbit for as long as two weeks.

“It’s always great to see a space technology mission make it to orbit – the high frontier is the ultimate testing ground for new and innovative space technologies of the future,” said Michael Gazarik, NASA’s associate administrator for space technology in Washington.

“Smartphones offer a wealth of potential capabilities for flying small, low-cost, powerful satellites for atmospheric or Earth science, communications, or other space-born applications. They also may open space to a whole new generation of commercial, academic and citizen-space users.”

Satellites consisting mainly of the smartphones will send information about their health via radio back to Earth in an effort to demonstrate they can work as satellites in space. The spacecraft also will attempt to take pictures of Earth using their cameras. Amateur radio operators around the world can participate in the mission by monitoring transmissions and retrieving image data from the three satellites. Large images will be transmitted in small chunks and will be reconstructed through a distributed ground station network. More information can found at http://www.phonesat.org.

NASA’s off-the-shelf PhoneSats already have many of the systems needed for a satellite, including fast processors, versatile operating systems, multiple miniature sensors, high-resolution cameras, GPS receivers and several radios.

NASA engineers kept the total cost of the components for the three prototype satellites in the PhoneSat project between $3,500 and $7,000 by using primarily commercial hardware and keeping the design and mission objectives to a minimum. The hardware for this mission is the Google-HTC Nexus One smartphone running the Android operating system.

NASA added items a satellite needs that the smartphones do not have – a larger, external lithium-ion battery bank and a more powerful radio for messages it sends from space. The smartphone’s ability to send and receive calls and text messages has been disabled. Each smartphone is housed in a standard cubesat structure, measuring about 4 inches square. The smartphone acts as the satellite’s onboard computer. Its sensors are used for attitude determination and its camera for Earth observation.

 




All of this week's top headlines to your email every Friday.


 
 

 

Year in space starts for one American, one Russian

Three crew members representing the United States and Russia are on their way to the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan at 3:42 p.m., EDT, March 27. NASA astronaut Scott Kelly and Russian Federal Space Agency (Roscosmos) cosmonaut Mikhail Kornienko will spend about a year living and working aboard the...
 
 
NASA photograph

Orion parachute testing conducted at AEDC NFAC facility

AEDC engineers were part of a test team that performed wind tunnel testing on the parachutes for NASA Orion spacecraft in January. The test team also consisted of NASA, Airborne Systems, Jacobs Engineering and NFAC personnel. P...
 
 

Ninth Boeing GPS IIF reaches orbit, sends first signals

Boeing Global Positioning System (GPS) IIF satellites are steadily replenishing the orbiting constellation, continuing to improve reliability and accuracy for users around the world. The ninth GPS IIF reached orbit about three hours, 20 minutes after launching today aboard a United Launch Alliance (ULA) Delta IV rocket from Cape Canaveral Air Force Station, Fla., and...
 

 
NASA/JPL-Caltech photograph

NASA asteroid hunter spacecraft data available to public

NASA/JPL-Caltech photograph The NEOWISE spacecraft viewed comet C/2014 Q2 (Lovejoy) for a second time on January 30, 2015, as the comet passed through the closest point to our sun along its 14,000-year orbit, at a solar distanc...
 
 
NASA and ESA image

NASA’s Hubble, Chandra find clues that may help identify dark matter

NASA and ESA image Here are images of six different galaxy clusters taken with NASA’s Hubble Space Telescope (blue) and Chandra X-ray Observatory (pink) in a study of how dark matter in clusters of galaxies behaves when t...
 
 
SOFIA

SOFIA finds missing link between supernovae, planet formation

NASA/CXO/Herschel/VLA/Lau et al SOFIA data reveal warm dust (white) surviving inside a supernova remnant. The SNR Sgr A East cloud is traced in X-rays (blue). Radio emission (red) shows expanding shock waves colliding with surr...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>