Defense

April 26, 2013

Lasers bring new urgency to electric power research

In the wake of the recent announcement that laser weapons will be put on U.S. Navy ships, the need for reliable, high-voltage shipboard power has become a matter of national security, officials said at this week’s Electric Ship Technologies Symposium outside Washington, D.C.

The Office of Naval Research (ONR)-sponsored event featured some of the world’s top scientists and engineers in power systems, who agree that a new era in electric power is within sight.

“The work being done in this area is vital,” said Dr. Thomas Killion, who heads ONR’s Office of Transition. “As the upcoming deployment of a shipboard laser weapon reminds us, we need power generation and power management systems with greater-than-ever capabilities, but from devices that are smaller than ever.”

Earlier this month, Chief of Naval Operations Jonathan Greenert announced that for the first time a laser weapon system (LaWS) will be placed onboard a deployed ship, USS Ponce, for testing in the Persian Gulf in 2014. The announcement underscored the need for accessible high-power electric generation, capable of meeting the substantial demands that will be needed to power laser systems and other high-power weapon systems.

As the technology advances, and faced with rising and unpredictable fossil fuel costs, the Navy’s next-generation surface combatant ship will leverage electric ship technologies in its design.

While electric ships already exist, design characteristics of a combatant ship are more complex with regard to weight, speed, maneuverability-and now, directed energy weapons.

ONR-supported scientists are focused on cutting-edge technologies that include silicon carbide (SiC)-based transistors, transformers and power converters.

“SiC is important because it improves power quality and reduces size and weight of components by as much as 90 percent,” said Sharon Beerman-Curtin, ONR’s power and energy science and technology lead. “This is a critical technology enabler for future Navy combatant ships that require massive amounts of highly controlled electricity to power advanced sensors, propulsion and weapons such as lasers and the electromagnetic railgun.”

Killion said that a lighter, smaller footprint on ships will contribute to the substantial increase in energy efficiency that is predicted from breakthroughs in electric power research.

“The enhanced capabilities and potential cost savings of increased power at reduced size cannot be overemphasized,” he said. “This is the future.”

Improved power systems could have enormous impact in both military and civilian sectors. Concerns by engineers over an aging power grid in the United States and elsewhere, for instance, have grown in recent years.

The Navy’s power and engineering efforts that will further naval power hold similar promise for civilian benefit. ONR sponsors the Electric Ship Research and Development Consortium, composed of eight leading universities. The ESRDC is focused on afloat power systems, and leads efforts to address a national shortage of electric power engineers, and ensure U.S. superiority in electric systems.

Some of the critical technologies ONR is working on include power-dense electronics; new power conversion capabilities; energy storage; and sensors, weapons and protection. Killion said all of these areas deserve support because they are of naval and national importance.

“A key challenge in designing an all-electric future naval combatant ship is enabling technologies that can provide power agility with minimal energy storage needs,” said Beermann-Curtin. “We are making truly noteworthy progress toward those goals.”

At the symposium, Killion also announced the pending Fiscal Year 2013 Small Business Innovation Research solicitation opportunities in the power and energy area, including continued development of automated methods for design of cooling systems; alternative power supplies; ship energy use monitoring and analysis methods; compact connectors; and compact power for radio frequency sources.




All of this week's top headlines to your email every Friday.


 
 

 
Navy photograph

Triton has first cross-country flight from Palmdale

Northrop Grumman photograph The MQ-4C Triton Unmanned Aircraft System takes off from Northrop Grummanís Palmdale, Calif., facility Sept. 17 for its first cross-country flight to Naval Air Station Patuxent, River, Md. PALMDALE,...
 
 
Air Force photograph by Michael J. Pausic

Future of NATO: Adapting to a new security environment

Air Force photograph by Michael J. Pausic Gen. Phillip Breedlove informs the assembled crowd about the results of the recent NATO Summit and the areas of instability that affect Europe that have regional implications. Seated in...
 
 
Air Force photograph by Scott M. Ash

AFRL commander describes Air Force’s technology vision

Air Force photograph by Scott M. Ash Maj. Gen. Thomas Masiello takes a question from an audience member after discussing Air Force Research Laboratory breakthrough technologies during the 2014 Air Force Association’s Air ...
 

 
Air Force photograph by SrA. Timothy Young

F-35 on time to deliver global security, Air Force official said

Air Force photograph by SrA. Timothy Young An F-35A Lightning II, assigned to 59th Test and Evaluation Squadron, takes flight July 18, 2014, at Nellis Air Force Base, Nev. Work leading up the completion of the multinational F-3...
 
 
Navy photograph

Navy’s Triton unmanned aircraft completes first cross-country flight

Navy photograph The Navy’s unmanned MQ-4C Triton prepares to land at Naval Air Station Patuxent River, Md., Sept. 18 after completing an approximately 11-hour flight from Northrop Grumman’s California facility.   The M...
 
 
Air Force photograph by SSgt. Christopher Ruano

F-16 collision-avoidance system could save lives

Air Force photograph by SSgt. Christopher Ruano The Air Force Research Laboratory Automatic Ground Collision Avoidance System will automatically take over an aircraft’s flight controls if a crash is imminent. The technolo...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>