Tech

May 3, 2013

NASA opens new era in measuring Western U.S. snowpack

A new NASA airborne mission has created the first maps of the entire snowpack of two major mountain watersheds in California and Colorado, producing the most accurate measurements to date of how much water they hold.

The data from NASA’s Airborne Snow Observatory mission will be used to estimate how much water will flow out of the basins when the snow melts. The data-gathering technology could improve water management for 1.5 billion people worldwide who rely on snowmelt for their water supply.

“The Airborne Snow Observatory is on the cutting edge of snow remote-sensing science,” said Jared Entin, a program manager in the Earth Science Division at NASA Headquarters in Washington. “Decision makers like power companies and water managers now are receiving these data, which may have immediate economic benefits.”

The mission is a collaboration between NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the California Department of Water Resources in Sacramento.

A Twin Otter aircraft carrying NASA’s Airborne Snow Observatory began a three-year demonstration mission in April that includes weekly flights over the Tuolumne River Basin in California’s Sierra Nevada and monthly flights over Colorado’s Uncompahgre River Basin. The flights will run through the end of the snowmelt season, which typically occurs in July. The Tuolumne watershed and its Hetch Hetchy Reservoir are the primary water supply for San Francisco. The Uncompahgre watershed is part of the Upper Colorado River Basin that supplies water to much of the western United States.

The mission’s principal investigator, Tom Painter of JPL, said the mission fills a critical need in an increasingly thirsty world, initially focusing on the western United States, where snowmelt provides more than 75 percent of the total freshwater supply.

“Changes in and pressure on snowmelt-dependent water systems are motivating water managers, governments and others to improve understanding of snow and its melt,” Painter said. “The western United States and other regions face significant water resource challenges because of population growth and faster melt and runoff of snowpacks caused by climate change. NASA’s Airborne Snow Observatory combines the best available technologies to provide precise, timely information for assessing snowpack volume and melt.” The observatory’s two instruments measure two properties most critical to understanding snowmelt runoff and timing. Those two properties have been mostly unmeasured until now.

A scanning lidar system from the Canadian firm Optech Inc. of Vaughan, Ontario, measures snow depth to determine the first property, snow water equivalent with lasers. Snow water equivalent represents the amount of water in the snow on a mountain. It is used to calculate the amount of water that will run off.

An imaging spectrometer built by another Canadian concern, ITRES of Calgary, Alberta, measures the second property, snow albedo. Snow albedo represents the amount of sunlight reflected and absorbed by snow. Snow albedo controls the speed of snowmelt and timing of its runoff.

By combining these data, scientists can tell how changes in the absorption of sunlight cause snowmelt rates to increase. The Airborne Snow Observatory flies at an altitude of 17,500 feet -22,000 feet to produce frequent maps that scientists can use to monitor changes over time. It can calculate

snow depth to within about 4 inches and snow water equivalent to within 5 percent. Data are processed on the ground and made available to participating water managers within 24 hours. Before now, Sierra Nevada snow water equivalent estimates have been extrapolated from monthly manual ground snow surveys conducted from January through April. These survey sites are sparsely located, primarily in lower to middle elevations that melt free of snow each spring, while snow remains at higher elevations. Water managers use these survey data to forecast annual water supplies. The information affects decisions by local water districts, agricultural interests and others. The sparse sampling can lead to large errors. In contrast, the NASA observatory can map all the snow throughout the entire snowmelt season.

“The Airborne Snow Observatory is providing California water managers the first near-real-time, comprehensive determination of basin-wide snow water equivalent,” said Frank Gehrke, mission co-investigator and chief of the California Cooperative Snow Surveys Program for the California Department of Water Resources. “Integrated into models, these data will enhance the state’s reservoir operations, permitting more efficient flood control, water supply management and hydroelectric power generation.”

Gehrke said the state will continue to conduct manual surveys while it incorporates the Airborne Snow Observatory data. “The snow surveys are relatively inexpensive, help validate observatory data and provide snow density measurements that are key to reducing errors in estimating snow water equivalent,” he said.

Painter plans to expand the airborne mapping program to the entire Upper Colorado River Basin and Sierra Nevada. “We believe this is the future of water management in the western United States,” he said.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 23, 2014

News: U.S. conducts spy flights over Russia - After a tit-for-tat series of delays, the United States conducted an Open Skies Treaty intelligence flight over Russian territory April 21, a State Department official said.  Army paratroopers heading to Poland after Russian annexation of Crimea - U.S. Army paratroopers are arriving in Poland to begin a series of...
 
 

News Briefs April 23, 2014

U.S. military deaths in Afghanistan at 2,177 As of April 22, 2014, at least 2,177 members of the U.S. military had died in Afghanistan as a result of the U.S.-led invasion of Afghanistan in late 2001, according to an Associated Press count. The AP count is one less than the Defense Department’s tally. At least...
 
 

Northrop Grumman sets new greenhouse gas emission reduction goal of 30 percent by 2020

Northrop Grumman announced April 22 its commitment to reduce greenhouse gas emissions by 30 percent from 2010 levels by 2020, as part of its commemoration of Earth Day.   “Northrop Grumman is dedicated to top performance in environmental sustainability,” said Wes Bush, chairman, chief executive officer and president. “This new goal sets the bar significantly...
 

 

Lockheed Martin demonstrates enhanced ground control system, software for small UAV

Lockheed Martin’s Group 1 family of unmanned aircraft systems is migrating to enhanced automation capabilities using its Kestrelô “Fly Light” flight control systems and industry-leading mobile Ground Control Station software. The increased automation allows operators to focus on executing the mission, rather than flying various aircraft. Earlier this year, Lockheed MartinR...
 
 

U.S. Navy awards General Dynamics $33 million to operate, maintain military sealift ships

The U.S. Navy has awarded General Dynamics American Overseas Marine LLC a $32.7 million contract modification to operate and maintain seven large, medium-speed, roll-on / roll-off ships for the Military Sealift Command. AMSEA is a wholly owned subsidiary of General Dynamics. Under the terms of the modification, AMSEA will provide services including crewing, engineering, maintenance,...
 
 

US Navy deploys Standard Missile-3 Block IB for first time

In partnership with the Missile Defense Agency, the U.S. Navy deployed the second-generation Standard Missile-3 Block IB made by Raytheon for the first time, initiating the second phase of the Phased Adaptive Approach. “The SM-3 Block IB’s completion of initial operational testing last year set the stage for a rapid deployment to theater,” said Dr....
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>