Tech

May 3, 2013

NASA opens new era in measuring Western U.S. snowpack

A new NASA airborne mission has created the first maps of the entire snowpack of two major mountain watersheds in California and Colorado, producing the most accurate measurements to date of how much water they hold.

The data from NASA’s Airborne Snow Observatory mission will be used to estimate how much water will flow out of the basins when the snow melts. The data-gathering technology could improve water management for 1.5 billion people worldwide who rely on snowmelt for their water supply.

“The Airborne Snow Observatory is on the cutting edge of snow remote-sensing science,” said Jared Entin, a program manager in the Earth Science Division at NASA Headquarters in Washington. “Decision makers like power companies and water managers now are receiving these data, which may have immediate economic benefits.”

The mission is a collaboration between NASA’s Jet Propulsion Laboratory in Pasadena, Calif., and the California Department of Water Resources in Sacramento.

A Twin Otter aircraft carrying NASA’s Airborne Snow Observatory began a three-year demonstration mission in April that includes weekly flights over the Tuolumne River Basin in California’s Sierra Nevada and monthly flights over Colorado’s Uncompahgre River Basin. The flights will run through the end of the snowmelt season, which typically occurs in July. The Tuolumne watershed and its Hetch Hetchy Reservoir are the primary water supply for San Francisco. The Uncompahgre watershed is part of the Upper Colorado River Basin that supplies water to much of the western United States.

The mission’s principal investigator, Tom Painter of JPL, said the mission fills a critical need in an increasingly thirsty world, initially focusing on the western United States, where snowmelt provides more than 75 percent of the total freshwater supply.

“Changes in and pressure on snowmelt-dependent water systems are motivating water managers, governments and others to improve understanding of snow and its melt,” Painter said. “The western United States and other regions face significant water resource challenges because of population growth and faster melt and runoff of snowpacks caused by climate change. NASA’s Airborne Snow Observatory combines the best available technologies to provide precise, timely information for assessing snowpack volume and melt.” The observatory’s two instruments measure two properties most critical to understanding snowmelt runoff and timing. Those two properties have been mostly unmeasured until now.

A scanning lidar system from the Canadian firm Optech Inc. of Vaughan, Ontario, measures snow depth to determine the first property, snow water equivalent with lasers. Snow water equivalent represents the amount of water in the snow on a mountain. It is used to calculate the amount of water that will run off.

An imaging spectrometer built by another Canadian concern, ITRES of Calgary, Alberta, measures the second property, snow albedo. Snow albedo represents the amount of sunlight reflected and absorbed by snow. Snow albedo controls the speed of snowmelt and timing of its runoff.

By combining these data, scientists can tell how changes in the absorption of sunlight cause snowmelt rates to increase. The Airborne Snow Observatory flies at an altitude of 17,500 feet -22,000 feet to produce frequent maps that scientists can use to monitor changes over time. It can calculate

snow depth to within about 4 inches and snow water equivalent to within 5 percent. Data are processed on the ground and made available to participating water managers within 24 hours. Before now, Sierra Nevada snow water equivalent estimates have been extrapolated from monthly manual ground snow surveys conducted from January through April. These survey sites are sparsely located, primarily in lower to middle elevations that melt free of snow each spring, while snow remains at higher elevations. Water managers use these survey data to forecast annual water supplies. The information affects decisions by local water districts, agricultural interests and others. The sparse sampling can lead to large errors. In contrast, the NASA observatory can map all the snow throughout the entire snowmelt season.

“The Airborne Snow Observatory is providing California water managers the first near-real-time, comprehensive determination of basin-wide snow water equivalent,” said Frank Gehrke, mission co-investigator and chief of the California Cooperative Snow Surveys Program for the California Department of Water Resources. “Integrated into models, these data will enhance the state’s reservoir operations, permitting more efficient flood control, water supply management and hydroelectric power generation.”

Gehrke said the state will continue to conduct manual surveys while it incorporates the Airborne Snow Observatory data. “The snow surveys are relatively inexpensive, help validate observatory data and provide snow density measurements that are key to reducing errors in estimating snow water equivalent,” he said.

Painter plans to expand the airborne mapping program to the entire Upper Colorado River Basin and Sierra Nevada. “We believe this is the future of water management in the western United States,” he said.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 6, 2015

News: IG: VHA misappropriated $92.5M for claims system - The Veterans Health Administration (VHA) misappropriated more than $90 million intended for medical support and compliance programs in order to build an automated claims processing system, according to an Inspector General report released this week.   Business: Gulf arms race fuels UAE push for defense industry - Soaring...
 
 

News Briefs March 6, 2015

Man charged with theft of military documents seeks release An engineer who worked for a defense contractor who’s been charged with attempting to travel to China with stolen documents on the development of advanced titanium for U.S. military aircraft is asking a judge to free him while he awaits trial. A hearing on Yu Long’s...
 
 
Air Force photograph by Rick Goodfriend

AFRL offering prize for turbine engine development

Air Force photograph by Rick Goodfriend Discover meetings to be held in Ohio on March 24-25. The Air Force Research Laboratory is leading the first Air Force technology prize, issuing a challenge to develop a small, efficient t...
 

 
Lockheed Martin photograph

Lockheed Martin P-3 Orion wing line restarted

Lockheed Martin photograph From left: Peter Hillier, Karen Eilbmeier, and Michael Spurr from the Canada Department of National Defence were on hand to commemorate the reopening of the P-3 wing line at Marietta, Ga.   Lockh...
 
 
Army photograph

Army Research Laboratory lays out science and technology priorities through 2019

Army photograph Dr. Rick Beyer, propulsion science expert, aligns a sample in a Bruker Wide-angle X-ray scattering camera at the Army Research Laboratory in Adelphi, Md. The laboratory recently released its technical implementa...
 
 
Air Force photograph by A1C Dillian Bamman

‘Iron Horse’ sets off for final flight

Air Force photograph by A1C Dillian Bamman Aircraft 62-1863 ‘Iron Horse’, a HC-130P Combat King, rests before takeoff Mar. 3, 2015, at Moody Air Force Base, Ga. Throughout its career, Iron Horse has flown for over 27,000 ho...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>