Space

May 8, 2013

Northrop Grumman completes lunar lander study for Golden Spike Company

This figure shows a preliminary sketch of the minimalist ascent pod with surface habitat concept packaged in a five-meter diameter payload fairing. The pressurized compartments and propellant tanks easily fit in the available space. Ascent thrusters are mounted on outriggers that are folded up to fit in the payload fairing and the landing gear is folded inward. Also shown are initial side and top views of the ascent pod “Pumpkin” and the surface habitat with crew members in pressure suits.

REDONDO BEACH, Calif. – Northrop Grumman has completed a feasibility study for a new commercial lunar lander for the Golden Spike Company.

The study confirmed the viability of lander concepts for Golden Spike’s human lunar expedition architecture and conceived a novel new, low-mass ascent stage concept dubbed “Pumpkin.”

Northrop Grumman’s study for Golden Spike conducted the following tasks:

  • Reviewed GSC’s level one requirements and synthesized a set of study ground rules and assumptions emphasizing automated operations, simplicity and low cost.
  • Established propulsion requirements for lunar orbit loiter, descent to the lunar surface, ascent to low lunar orbit and rendezvous with a crew vehicle for pragmatic lunar landing sites.
  • Developed current and stretch factors to reflect the improvement in relevant technologies since the completion of the Apollo program.
  • Evaluated 180 lunar lander cases for various options and sensitivities including loiter, staging, propellants, engines, surface duration, surface cargo and technology basis.
  • Established a pragmatic design trade space for future more detailed analysis and development.

The study determined that for GSC’s mission architecture, there are many more options for all cryogenic propellants compared with storable propellants, but that multiple storable propellant options are possible. Cryogenic propellants have higher performance, but are more difficult to contain for the GSC mission duration than storable propellants such as those used in the Apollo program.

A novel set of options using a minimalist pressurized ascent pod and descent stage with a surface habitat was also studied and shown to be viable. Layout sketches of this concept show that it can be packaged within a five-meter diameter fairing payload envelope.

Three-dimensional solid models with representative crew members established target pressurized volumes for the ascent pod and surface habitat. This unique approach has a good chance of meeting GSC’s objectives with all-storable propellants, which reduces development risks and costs.

Martin McLaughlin, Northrop Grumman’s study lead, said, “This concept has significant operability advantages for surface exploration since the surface habitat can be segmented to isolate lunar dust and provides more space for living and for selecting the most valuable lunar return samples. We affectionately call the minimalist ascent pod ‘Pumpkin’ because of its spherical shape and because it returns the crew to orbit after the surface exploration party.”

Alan Stern, president and chief executive officer, GSC, said, “Northrop Grumman has done an exemplary job and helped advance Golden Spike’s technical approach to renewed human lunar exploration. The study’s results are very exciting and will help enable a new wave of human lunar exploration that Golden Spike plans.”

Northrop Grumman and its legacy companies – Grumman Aerospace and TRW – designed and built the Apollo Lunar Module and Lunar Module Descent Engines.

 




All of this week's top headlines to your email every Friday.


 
 

 
ball-satelilte

Ball Aerospace integrates two of five instruments for JPSS-1

Two of the five instruments scheduled to fly on the nation’s next polar-orbiting weather satellite, NOAA’s Joint Polar Satellite System -1, have been integrated to the spacecraft bus by prime contractor Ball Aerospa...
 
 
NASA/JPL photograph

NASA’s Dawn spacecraft captures best-ever view of dwarf planet

Zoomed out – PIA19173 Ceres appears sharper than ever at 43 pixels across, a higher resolution than images of Ceres taken by the NASA’s Hubble Space Telescope in 2003 and 2004. NASA’s Dawn spacecraft has retur...
 
 
ATK

ATK completes installation of world’s largest solid rocket motor for ground test

ATK The first qualification motor for NASA’s Space Launch Systems booster is installed in ATK’s test stand in Utah – ready for a March 11 static-fire test. NASA and ATK have completed installing the first Spac...
 

 
ULA photograph

Third Lockheed Martin-built MUOS satellite launched, responding to commands

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Complex 41 at...
 
 
ULA photograph

ULA successfully launches Navy’s Mobile User Objective System-3

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System (MUOS) satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Comple...
 
 

Aerojet Rocketdyne Propulsion supports launch, flight of third MUOS satellite

Aerojet Rocketdyne played a critical role in successfully placing the third of five planned Mobile User Objective System (MUOS-3) satellites, designed and built by Lockheed Martin, into orbit for the U.S. Navy. The mission was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket, with five Aerojet...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>