Tech

May 10, 2013

AFOSR-funded research key to revolutionary ‘green’ spacecraft propellant

Robert P. White
Arlington, Va.

In 2015, NASA, for the first time, will fly a space mission utilizing a radically different propellant – one which has reduced toxicity and is environmentally benign.

In 2015, NASA, for the first time, will fly a space mission utilizing a radically different propellant -one which has reduced toxicity and is environmentally benign. This energetic ionic liquid, or EIL, is quite different from the historically employed hydrazine-based propellant, which was first used as a rocket fuel during World War II for the Messerschmitt Me 163B (the first rocket-powered fighter plane).

Within the U.S. space program, hydrazine was used on the 1970s Viking Mars program, and more recently in the Phoenix lander and Curiosity rover Mars missions, as well as in the Space Shuttle’s auxiliary power units. Significantly, monopropellant hydrazine-fueled rocket engines are the norm in controlling the terminal descent of spacecraft. What makes hydrazine desirable as a propellant for this terminal descent role is that when combined with various catalysts, the result is an extremely exothermic reaction that releases significant heat in a very short time, producing energy in the form of large volumes of hot gas from a relatively small volume of hydrazine liquid.

Unfortunately, hydrazine has several significant drawbacks: it is very toxic when inhaled, corrosive on contact with skin, hazardously flammable, and falls short in providing the propulsive power required for future spacecraft systems. In 1998, driven by these challenges, Dr. Michael Berman, a Program Manager at the Arlington, Virginia-based Air Force Office of Scientific Research, the basic research arm of the Air Force Research Laboratory, funded Dr. Tom Hawkins of the Propellants Branch, Rocket Propulsion Division at AFRL’s Aerospace Systems Directorate, to find a more benign, yet even more powerful material to replace hydrazine.

This research effort was ultimately associated with a joint government and industry development program, the Integrated High Payoff Rocket Propulsion Technology initiative, to improve U.S. rocket propulsion systems. IHPRPT challenged the Department of Defense, the National Air and Space Administration, and the rocket propulsion industry to double U.S. rocket propulsion capability (cost and performance) by 2010. Beginning in 1996, this IHPRPT challenge meant the development of propellants that would provide far greater energy density than current state-of-the-art propellants.

Hawkins’ interest in EILs began early on in his career beginning at Lehigh University when he worked on advanced propellants for the Strategic Defense Initiative in the 1980s. Knowing the untapped potential of ionic liquids to provide high energy density materials, he embarked on an effort to design and characterize the EIL family. This effort was funded by AFOSR and continues to the present day.

It was†in 2002†when†Hawkins thought, “… we were on the right track when we produced an ionic liquid monopropellant that incorporated an EIL that was investigated under our AFOSR program,” said Hawkins. “This propellant class, known as AF-M315, has an energy density close to twice that of the state-of-the-art spacecraft monopropellant, hydrazine.”

With additional support from the IHPRPT program, the Missile Defense Agency and related USAF missile programs, a full characterization of one of these new propellants, AF-M315E, was investigated for its overall safety and hazard properties. According to Hawkins, these safety properties, coupled with the performance of AF-M315E, were “…absolutely outstanding; we found the oral toxicity of AF-M315E to be less than that of caffeine, and its vapor toxicity to be negligible. The vapor flammability of AF-M315E was essentially nil, and this made it difficult to unexpectedly ignite and sustain combustion of AF-M315E–one could even put out small fires with the propellant!”

In 2005 NASA took a keen interest in this very promising alternative to hydrazine and performed further evaluations. Follow on work performed by Aerojet, Inc. brought AF-M315E engine design to a level that was very attractive for a technology transition to the commercial sector. But for that to occur, it was necessary to find a champion to sponsor the flight demonstration that would make AF-M315E spacecraft propulsion an ‘off-the-shelf’ choice for future propulsion systems. NASA became that champion in 2012 with their selection of Ball Aerospace & Technologies Corporation as the lead integrator for the Green Propellant Infusion Mission–a $45 million program that will produce new AF-M315E- based thrusters for NASA’s 2015 spacecraft mission. Additional program team members consist of the Air force Research Laboratory, Aerojet, Inc., the Air Force Space & Missile Systems Center and the NASA/Glenn Research Center.

The field of energetic ionic liquids is the product of AFOSR-sponsored research at AFRL that is changing the landscape of work in the energetic materials community.

“The AFOSR- funded program provided the synthesis and characterization work for an EIL that enabled the experimental USAF fuel, AF-M315E, to act as a high-energy density, environmentally benign, easy-to-handle replacement for spacecraft hydrazine fuel,” said Hawkins.

Hawkins also noted that twenty years is a well-recognized time period for producing such a revolutionary propellant approach and propulsion system due to the fact that the EIL approach to liquid propulsion is completely different than that of hydrazine, and, most significantly, the performance potentials of EIL-based propellants are not small incremental improvements, but significantly larger than any state-of-the-art propellant. As EIL-based propellants are developed, they will provide lower cost and safer propulsion system operations along with greater mission flexibility and faster mission response times.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 21, 2014

News: IDF releases Iron Dome interception rate - Israel’s Iron Dome system has successfully intercepted 86 percent of the Palestinian rockets that it has engaged during Operation ‘Protective Edge’, according to the Israel Defense Forces.   Business: The turnaround of France’s defense giant Thales - Within seconds of meeting Jean-Bernard Levy it becomes apparent that h...
 
 

News Briefs July 21, 2014

Corruption investigated in Kansas National Guard The Kansas Adjutant General’s office says federal authorities are investigating possible corruption involving outside medical companies’ contracts with the Kansas Army National Guard. Sharon Watson, spokeswoman for the adjutant general’s office, confirmed the investigation Friday to The Lawrence Journal-World but declined to rel...
 
 
Air Force photograph by Rick Goodfriend

B61 undergoes testing in AEDC wind tunnel

Air Force photograph by Rick Goodfriend Arnold Engineering Development Complex engineers recently joined researchers with Sandia National Laboratories to perform a wind tunnel test on a full-scale mock-up B61. Pictured with the...
 

 
Army photograph by Charles Kennedy

New CT scanner finds diverse, important uses for researchers

Army photograph by Charles Kennedy Turning a now-standard tool for medical diagnostics and therapeutics to a host of new applications, the U. S. Army Research Laboratory’s Survivability/Lethality Analysis Directorate rece...
 
 

Ingalls Shipbuilding awarded $23.5 million LHA 8 affordability contract

Huntington Ingalls Industries’ Ingalls Shipbuilding division has been awarded an affordability design contract for $23.5 million for early industry involvement to reduce the construction and life-cycle cost for the amphibious assault ship LHA 8. “Ingalls Shipbuilding has been constructing large-deck amphibious ships for nearly 50 years, and this contract will build on our company...
 
 
Marine Corps photograph

DOD identifies missing World War II Marine

Marine Corps photograph Marines wounded during the landing on Tarawa in November 1943 are towed out on rubber boats to larger vessels that will take them to base hospitals. The Department of Defense POW/Missing Personnel Office...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>