Space

May 10, 2013

NASA Curiosity rover team selects second drilling target on Mars

The team operating NASA’s Curiosity Mars rover on Mars has selected a second target rock for drilling and sampling. The rover will set course to the drilling location in coming days.

This second drilling target, called “Cumberland,” lies about nine feet (2.75 meters) west of the rock where Curiosity’s drill first touched Martian stone in February. Curiosity took the first rock sample ever collected on Mars from that rock, called “John Klein.” The rover found evidence of an ancient environment favorable for microbial life. Both rocks are flat, with pale veins and a bumpy surface. They are embedded in a layer of rock on the floor of a shallow depression called “Yellowknife Bay.”

This second drilling is intended to confirm results from the first drilling, which indicated the chemistry of the first powdered sample from John Klein was much less oxidizing than that of a soil sample the rover scooped up before it began drilling.

“We know there is some cross-contamination from the previous sample each time,” said Dawn Sumner, a long-term planner for Curiosity’s science team at the University of California at Davis. “For the Cumberland sample, we expect to have most of that cross-contamination come from a similar rock, rather than from very different soil.”

Although Cumberland and John Klein are very similar, Cumberland appears to have more of the erosion-resistant granules that cause the surface bumps. The bumps are concretions, or clumps of minerals, which formed when water soaked the rock long ago. Analysis of a sample containing more material from these concretions could provide information about the variability within the rock layer that includes both John Klein and Cumberland.

Mission engineers at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., recently finished upgrading Curiosity’s operating software following a four-week break. The rover continued monitoring the Martian atmosphere during the break but the team did not send any new commands because Mars and the sun were positioned in such a way the sun could have blocked or corrupted commands sent from Earth.

Curiosity is about nine months into a two-year prime mission since landing inside Gale Crater on Mars. After the second rock drilling in Yellowknife Bay and a few other investigations nearby, the rover will drive toward the base of Mount Sharp, a 3-mile (5-kilometer) tall layered mountain inside the crater.

JPL manages the Mars Science Laboratory Project, of which Curiosity is the centerpiece, for NASA’s Science Mission Directorate in Washington.

 




All of this week's top headlines to your email every Friday.


 
 

 
nasa-cassini

NASA Cassini images may reveal birth of new Saturn moon

NASA’s Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet’s known moons. Images taken w...
 
 

NASA completes LADEE mission with planned impact on Moon’s surface

Ground controllers at NASA’s Ames Research Center in Moffett Field, Calif., have confirmed that NASA’s Lunar Atmosphere and Dust Environment Explorer spacecraft impacted the surface of the moon, as planned, between 9:30 and 10:22 p.m., PDT, April 17. LADEE lacked fuel to maintain a long-term lunar orbit or continue science operations and was intentionally sent...
 
 
Photograph courtesy of NASA Ames/SETI Institute/JPL-Caltech

NASA’s Kepler telescope discovers first Earth-size planet in ‘habitable zone’

Photograph courtesy of NASA Ames/SETI Institute/JPL-Caltech Kepler-186f resides in the Kepler-186 system about 500 light-years from Earth in the constellation Cygnus. The system is also home to four inner planets, seen lined up...
 

 

Lockheed Martin solar ultraviolet imager installed on GOES-R weather satellite

Lockheed Martin has delivered a new solar analysis payload that will help scientists measure and forecast space weather, which can damage satellites, electrical grids and communications systems on Earth. The Solar Ultraviolet Imager instrument was integrated with the first flight vehicle of the National Oceanic and Atmospheric Administrationís next-generation Geostationary Operational Environm...
 
 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASAís Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this yea...
 
 

NASA signs agreement with SpaceX for use of historic launch pad

NASA Kennedy Space Center’s historic Launch Complex 39A, the site from which numerous Apollo and space shuttle missions began, is beginning a new mission as a commercial launch site. NASA signed a property agreement with Space Exploration Technologies Corporation (SpaceX) of Hawthorne, Calif., on Monday for use and occupancy of the seaside complex along Florida’s...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>