Tech

May 17, 2013

NASA satellite data help pinpoint glaciersí role in sea level rise

The Aletsch Glacier in Switzerland is the largest valley glacier in the Alps and it has been losing mass since the mid-19th century. A new study using data from two NASA satellites found that glaciers like this one lost an average of 571 trillion pounds of ice per year from 2003 to 2009, which contributed to about 30 percent of the total observed global sea level rise during the same period.

A new study of glaciers worldwide using observations from two NASA satellites has helped resolve differences in estimates of how fast glaciers are disappearing and contributing to sea level rise.

The new research found glaciers outside of the Greenland and Antarctic ice sheets, repositories of 1 percent of all land ice, lost an average of 571 trillion pounds (259 trillion kilograms) of mass every year during the six-year study period, making the oceans rise 0.03 inches (0.7 mm) per year. This is equal to about 30 percent of the total observed global sea level rise during the same period and matches the combined contribution to sea level from the Greenland and Antarctica ice sheets.

The study compares traditional ground measurements to satellite data from NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat) and Gravity Recovery and Climate Experiment (GRACE) missions to estimate ice loss for glaciers in all regions of the planet. The study period spans 2003 to 2009, the years when the two missions overlapped.

“For the first time, we have been able to very precisely constrain how much these glaciers as a whole are contributing to sea level rise,” said Alex Gardner, Earth scientist at Clark University in Worcester, Mass., and lead author of the study. “These smaller ice bodies are currently losing about as much mass as the ice sheets.”

The study was published May 16 in the journal Science.

ICESat, which stopped operating in 2009, measured glacier change through laser altimetry, which bounces lasers pulses off the ice surface to inform the satellite of changes in the height of the ice cover. ICESat’s successor, ICESat-2, is scheduled to launch in 2016. GRACE, still operational, detects variations in Earth’s gravity field resulting from changes in the planet’s mass distribution, including ice displacements.

The new research found all glacial regions lost mass from 2003 to 2009, with the biggest ice losses occurring in Arctic Canada, Alaska, coastal Greenland, the southern Andes and the Himalayas. In contrast, Antarctica’s peripheral glaciers – small ice bodies not connected to the main ice sheet – contributed little to sea level rise during that period. The study builds on a 2012 study using only GRACE data that also found glacier ice loss was less than estimates derived from ground-based measurements.

Current estimates predict all the glaciers in the world contain enough water to raise sea level by as much as 24 inches (about 60 centimeters). In comparison, the entire Greenland ice sheet has the potential to contribute about 20 feet (about 6 meters) to sea level rise and the Antarctic ice sheet just less than 200 feet (about 60 meters).

“Because the global glacier ice mass is relatively small in comparison with the huge ice sheets covering Greenland and Antarctica, people tend to not worry about it,” said study co-author Tad Pfeffer, a glaciologist at the University of Colorado in Boulder. “But it’s like a little bucket with a huge hole in the bottom: it may not last for very long, just a century or two, but while there’s ice in those glaciers, it’s a major contributor to sea level rise.”

To make ground-based estimates of glacier mass changes, glaciologists perform on-site measurements along a line from a glacier’s summit to its edge. Scientists extrapolate these measurements to the entire glacier area and carry them out for several years to estimate the glacier’s overall mass change over time. While this type of measurement does well for small, individual glaciers, it tends to overestimate ice loss when the findings are extrapolated to larger regions, such as entire mountain ranges.

“Ground observations often can only be collected for the more accessible glaciers, where it turns out thinning is occurring more rapidly than the regional averages,” Gardner said. “That means when those measurements are used to estimate the mass change of the entire region, you end up with regional losses that are too great.”

GRACE does not have fine enough resolution and ICESat does not have sufficient sampling density to study small glaciers, but the two satellites’ estimates of mass change for large glaciered regions agree well, the study concluded.

“We now have a lot more data for the glacier-covered regions because of GRACE and ICESat,” said Gardner. “Without having these independent observations, there was no way to tell that the ground observations were biased.”

The research involved 16 researchers from 10 countries, with major contributions from Clark University, the University of Michigan, Scripps Institution of Oceanography in San Diego, Trent University in Ontario, the University of Colorado at Boulder and the University of Alaska Fairbanks.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines January 23, 2015

News: Two Marines identified in deadly California helo crash - Two Marine Corps officers killed when their helicopter crashed during a training exercise in the Southern California desert were remembered Jan. 25 as talented pilots. Greek F-16 crashes in Spain during NATO exercise - Ten people died Jan. 26 after a Greek air force F-16 jet crashed...
 
 

News Briefs January 26, 2015

Navy wants to increase use of sonar-emitting buoys The U.S. Navy is seeking permits to expand sonar and other training exercises off the Pacific Coast, a proposal raising concerns from animal advocates who say that more sonar-emitting buoys would harm whales. The Navy now wants to deploy up to 720 sonobuoys about 12 miles off...
 
 
Air National Guard photograph by SSgt. Annie Edwards

ANG conducts air refueling training with NATO allies in Germany

Air National Guard photograph by SSgt. Annie Edwards A NATO E-3A AWACS aircraft approaches a Utah Air National Guard KC-135R Stratotanker for air refueling during a training flight over Germany on Jan. 13, 2015. Nearly 30 airme...
 

 
Air Force photograph by SrA. Armando A. Schwier-Morales

Ramstein Airmen train with French air force

Air Force photograph by SrA. Armando A. Schwier-Morales Two U.S. Air Force pilots and a French air force navigator discuss the route to the drop zone during a simulated low-level drop Jan. 21, 2015, at Orleans – Bricy Air...
 
 

Marines receive first F-35C Lightning II carrier variant

The first F-35C Lightning II, carrier variant, for the U.S. Marine Corps touched-down on the flight line at Eglin Air Force Base, Fla., Jan. 13, from the Lockheed Martin plant in Fort Worth, Texas, to begin training in support of carrier-based operations. U.S. Marine Lt. Col. J.T. Ryan, Marine Fighter Attack Squadron 501 detachment commander...
 
 

VA announces single regional framework under MyVA initiative

The Department of Veterans Affairs announced Jan. 26 that it is taking the first steps under the MyVA initiative to realign its many organizational maps into one map with five regions to better serve Veterans. The new regions under the MyVA alignment will allow VA to begin the process of integrating disparate organizational boundaries into...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>