Space

May 22, 2013

Herschel Space Observatory finds mega merger of galaxies

A massive and rare merging of two galaxies has been spotted in images taken by the Herschel space observatory, a European Space Agency mission with important NASA participation.

Follow-up studies by several telescopes on the ground and in space, including NASA’s Hubble Space Telescope and Spitzer Space Telescope, tell a tale of two faraway galaxies intertwined and furiously making stars. Eventually, the duo will settle down to form one super-giant elliptical galaxy.

The findings help explain a mystery in astronomy. Back when our universe was 3 billion to 4 billion years old, it was populated with large reddish elliptical-shaped galaxies made up of old stars. Scientists have wondered whether those galaxies built up slowly over time through the acquisitions of smaller galaxies, or formed more rapidly through powerful collisions between two large galaxies.

The new findings suggest massive mergers are responsible for the giant elliptical galaxies.

“We’re looking at a younger phase in the life of these galaxies – an adolescent burst of activity that won’t last very long,” said Hai Fu of the University of California at Irvine, who is lead author of a new study describing the results. The study is published in the May 22 online issue of Nature.

“These merging galaxies are bursting with new stars and completely hidden by dust,” said co-author Asantha Cooray, also of the University of California at Irvine. “Without Herschel’s far-infrared detectors, we wouldn’t have been able to see through the dust to the action taking place behind.”

Herschel, which operated for almost four years, was designed to see the longest-wavelength infrared light. As expected, it recently ran out of the liquid coolant needed to chill its delicate infrared instruments. While its mission in space is over, astronomers still are scrutinizing the data, and further discoveries are expected.

In the new study, Herschel was used to spot the colliding galaxies, called HXMM01, located about 11 billion light-years from Earth, during a time when our universe was about 3 billion years old. At first, astronomers thought the two galaxies were just warped, mirror images of one galaxy. Such lensed galaxies are fairly common in astronomy and occur when the gravity from a foreground galaxy bends the light from a more distant object.
After a thorough investigation, the team realized they were actually looking at a massive galaxy merger.

Follow-up characterization revealed the duo is churning out the equivalent of 2,000 stars a year. By comparison, our Milky Way hatches about two to three stars a year. The total number of stars in both colliding galaxies averages out to about 400 billion.

Mergers are fairly common in the cosmos, but this particular event is more unusual because of the prolific amounts of gas and star formation, and the sheer size of the merger at such a distant epoch.

The results go against the more popular model explaining how the biggest galaxies arise: through minor acquisitions of small galaxies. Instead, mega smash-ups may be doing the job.

NASA’s Herschel Project Office is based at the agency’s Jet Propulsion Laboratory in Pasadena, Calif., which contributed mission-enabling technology for two of Herschel’s three science instruments.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 22, 2014

News: Northrop challenges 3DELRR contract award - Northrop Grumman has formally issued a protest against the US Air Force’s decision to award its next-generation ground based radar to competitor Raytheon.   Business: Defense firms prefer GOP, but spread campaign cash between political parties - For every campaign contribution from a major arms manufacturer to a Republican candidate...
 
 

News Briefs October 22, 2014

Military converges on scene of Kansas jet crash Military personnel are investigating at the site in southeast Kansas where an Oklahoma Air National Guard fighter jet crashed after a midair collision with another one during a training exercise. The F-16 crashed Oct. 20 in a pasture about three miles northeast of Moline, an Elk County...
 
 
Courtesy photograph

Upgrades ‘new normal’ for armor in uncertain budget environment

Courtesy photograph The current Paladin is severely under-powered and overweight so its speed of cross-country mobility is pretty restricted. The Paladin Integrated Management program is designed to address a number of these we...
 

 

ISR: A critical capability for 21st century warfare

The progressive adaptations and breakthroughs made in the intelligence, surveillance and reconnaissance arena have changed the way wars are fought, and the way commanders think about the battlespace. “Whether we have airmen exploiting full motion video data or serving downrange in the (Central Command) area of responsibility, these individuals make up an enterprise of 30,000...
 
 

Lockheed Martin teams with Roketsan of Turkey on new standoff missile for F-35

Roketsan and Lockheed Martin signed a teaming agreement Oct. 22 for collaboration on the SOM-J, a new generation air-to-surface Standoff Cruise Missile for the F-35 Lightning II. The SOM system is an autonomous, long-range, low-observable, all-weather, precision air-to-surface cruise missile. The SOM-J variant is tailored for internal carriage on the F-35 aircraft. The companies will...
 
 

Army Operating Concept expands definition of combined arms

The Army Operating Concept, published Oct. 7, expands the idea of joint combined-arms operations to include intergovernmental and special operations capabilities, said Gen. Herbert R. McMaster Jr. The new concept includes prevention and shaping operations at the strategic level across domains that include maritime, air, space and cyberspace, he said. It’s a “shift in emphasis,”...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>