Space

May 24, 2013

NASA’s Hubble Space Telescope reveals the Ring Nebula’s true shape

The Ring Nebula’s distinctive shape makes it a popular illustration for astronomy books. But new observations by NASA’s Hubble Space Telescope of the glowing gas shroud around an old, dying, sun-like star reveal a new twist.

“The nebula is not like a bagel, but rather, it’s like a jelly doughnut, because it’s filled with material in the middle,” said C. Robert O’Dell of Vanderbilt University in Nashville, Tenn. He leads a research team that used Hubble and several ground-based telescopes to obtain the best view yet of the iconic nebula. The images show a more complex structure than astronomers once thought and have allowed them to construct the most precise 3-D model of the nebula.

“With Hubble’s detail, we see a completely different shape than what’s been thought about historically for this classic nebula,” O’Dell said. “The new Hubble observations show the nebula in much clearer detail, and we see things are not as simple as we previously thought.”

The Ring Nebula is about 2,000 light-years from Earth and measures roughly 1 light-year across. Located in the constellation Lyra, the nebula is a popular target for amateur astronomers.

Previous observations by several telescopes had detected the gaseous material in the ring’s central region. But the new view by Hubble’s sharp-eyed Wide Field Camera 3 shows the nebula’s structure in more detail. O’Dell’s team suggests the ring wraps around a blue, football-shaped structure. Each end of the structure protrudes out of opposite sides of the ring.

The nebula is tilted toward Earth so that astronomers see the ring face-on. In the Hubble image, the blue structure is the glow of helium. Radiation from the white dwarf star, the white dot in the center of the ring, is exciting the helium to glow. The white dwarf is the stellar remnant of a sun-like star that has exhausted its hydrogen fuel and has shed its outer layers of gas to gravitationally collapse to a compact object.

O’Dell’s team was surprised at the detailed Hubble views of the dark, irregular knots of dense gas embedded along the inner rim of the ring, which look like spokes in a bicycle wheel. These gaseous tentacles formed when expanding hot gas pushed into cool gas ejected previously by the doomed star. The knots are more resistant to erosion by the wave of ultraviolet light unleashed by the star. The Hubble images have allowed the team to match up the knots with the spikes of light around the bright, main ring, which are a shadow effect. Astronomers have found similar knots in other planetary nebulae.

All of this gas was expelled by the central star about 4,000 years ago. The original star was several times more massive than our sun. After billions of years converting hydrogen to helium in its core, the star began to run out of fuel. It then ballooned in size, becoming a red giant. During this phase, the star shed its outer gaseous layers into space and began to collapse as fusion reactions began to die out. A gusher of ultraviolet light from the dying star energized the gas, making it glow.

The outer rings were formed when faster-moving gas slammed into slower-moving material. The nebula is expanding at more than 43,000 miles an hour, but the center is moving faster than the expansion of the main ring. O’Dell’s team measured the nebula’s expansion by comparing the new Hubble observations with Hubble studies made in 1998.

The Ring Nebula will continue to expand for another 10,000 years, a short phase in the lifetime of the star. The nebula will become fainter and fainter until it merges with the interstellar medium.

Studying the Ring Nebula’s fate will provide insight into the sun’s demise in another 6 billion years. The sun is less massive than the Ring Nebula’s progenitor star, so it will not have an opulent ending.

“When the sun becomes a white dwarf, it will heat more slowly after it ejects its outer gaseous layers,” O’Dell said. “The material will be farther away once it becomes hot enough to illuminate the gas. This larger distance means the sun’s nebula will be fainter because it is more extended.”

In the analysis, the research team also obtained images from the Large Binocular Telescope at the Mount Graham International Observatory in Arizona and spectroscopic data from the San Pedro Martir Observatory in Baja California, Mexico.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 28, 2014

News: After F-15 jet crash in Virginia, rescue helicopters search for pilot - Helicopters are searching for an Air National Guard pilot after his F-15 jet crashed in the mountains of Virginia this morning, military officials said.   Business: U.S. Air Force 3DELRR contract expected soon - The U.S. Air Force could award the contract for its...
 
 

News Briefs August 28, 2014

Russian directing new offensive in Ukraine The Obama administration believes Russia is leading a new military counteroffensive in Ukraine. U.S. State Department spokeswoman Jen Psaki says Russia has sent additional columns of tanks and armored vehicles into its neighbor’s territory. She says the incursions suggest a ìRussian-directed counteroffensive is likely underway in the contested e...
 
 
LM-C5

Double Deuce

A U.S. Air Force crew ferried the 22nd C-5M Super Galaxy from the Lockheed Martin facilities in Marietta, Ga., Aug. 25. Aircraft 86-0011 was ferried by a crew led by Maj. Gen. Dwyer L. Dennis, Director, Global Reach Programs, O...
 

 
Northrop Grumman photograph

First ever RQ-4 Global Hawk hits 100th flight on NASA mission

Northrop Grumman photograph A historical look at the first Global Hawk (AV1) during its maiden flight over Edwards Air Force Base, Calif., on Feb. 28, 1998. AV1 has made history again with its 100th flight in support of NASA en...
 
 

Northrop Grumman’s CIRCM system completes U.S. Army flight testing

Northrop Grumman’s Common Infrared Countermeasures system recently completed another round of U.S. Army testing by demonstrating its capabilities on a UH-60M Black Hawk helicopter. The flight test was conducted at Redstone Arsenal in Huntsville, Ala., by the Redstone Test Center. The Northrop Grumman CIRCM system was subjected to rigorous conditions over a six-week period, after...
 
 
NASA photograph by David Olive

NASA completes successful battery of tests on composite cryotank

https://www.youtube.com/embed/qkGI6JeNY0E?enablejsapi=1&rel=0 NASA photograph by David Olive One of the largest composite cryotanks ever built recently completed a battery of tests at NASA’s Marshall Space Flight Cen...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>