Business

May 31, 2013

Lab effort to cut costs for Navy’s Triton UAS program

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability (CSI) program office at Naval Air Station Patuxent River, Md., views imagery transmitted from sensors aboard an aircraft. His team stood up a government-led image quality lab here in 2012 that will help determine how to effectively employ sensors and radars for the MQ-4C Triton and potentially other manned and unmanned aircraft in the future.

An engineer at Naval Air Station Patuxent River is leading an initiative that will save the Navy’s MQ-4C Triton Unmanned Aircraft System program several hundred thousand dollars.

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability program office, launched an image quality lab in 2012 that will help determine how to effectively employ Triton’s sensors and radars and potentially other manned and unmanned systems.

In preparation for the first Triton image evaluation, Weinstein, a former National Geospatial-Intelligence Agency employee, worked with the agency to provide the necessary training, software and image scientists for the first official evaluation of the P-8A aircraft’s Electro-Optical sensor. Since the P-8A and MQ-4C are part of the Maritime Patrol and Reconnaissance Force family of systems, Weinstein’s team made a decision to evaluate the P-8 first and include test engineers from both programs.

“Paul did an outstanding job getting this image quality assessment capability set up and running,” said Pat Ellis, MQ-4C Triton’s Mission Systems lead. “This will save the Triton program several hundred thousand dollars, since we will not have to submit packages for image ratings to NGA and the Office of Naval Intelligence for our imaging systems.”

Without this capability at Pax River, the Navy would have to rely on NGA to perform sensor testing, at a cost of more than $150,000 per evaluation. It would also take more than a month to return the analysis to the team. By having the lab at Pax, each test is virtually free and it takes less than one week to turn around the data to the test team, Weinstein said.

“This level of testing will enable program offices to make smart budget decisions with respect to changes to the current network and current integration measures as well as future integration efforts,” Ellis said.

Typically, image analysts perform this function, but the evaluation proved that test engineers can analyze images and make effective mission-planning decisions.

“We are following the fly-fix-fly philosophy as we figure out solutions that will allow lower bandwidth platforms to send better quality video,” Weinstein added. “We need to understand if a platform can meet its mission and avoid it just flying out and burning fuel.”

The first imagery evaluation for MQ-4C Triton will be conducted after the team has data available from Triton’s first flight, which was conducted May 22 at Northrop Grumman’s facility in Palmdale, Calif. The image-quality lab team will evaluate the MQ-4C’s EO/Infrared and Synthetic Aperture Radar sensors.

“The ability to collect and share real-time Intelligence, Surveillance and Reconnaissance quickly and accurately is crucial to ensuring battle commanders have the enhanced situational awareness required for a successful mission,” said Capt. Jim Hoke, MQ-4C Triton program manager.

As an adjunct to the manned P-8 aircraft, Triton is intended to provide persistent maritime and littoral ISR data collection and dissemination capability to the fleet.

 




All of this week's top headlines to your email every Friday.


 
 

 
atk-test

ATK successfully tests Orion launch abort motor igniter

NASA and ATK successfully completed a static test of the launch abort motor igniter for the Orion crew capsule’s Launch Abort System. Conducted at ATK’s facility in Promontory, Utah, this test is the next step towa...
 
 
uav-coalition

Small UAV coalition launched to advance commercial use of unmanned aerial vehicles

Leading technology companies Oct. 1 formally announced the formation of the Small UAV Coalition to help pave the way for commercial, philanthropic, and civil use of small unmanned aerial vehicles in the United States and abroad...
 
 

Northrop Grumman hand held precision targeting device completes successful developmental test

A new hand held targeting system developed by Northrop Grumman that will enable soldiers to engage targets with precision munitions while providing digital connectivity to related military units has successfully completed developmental testing at White Sands Missile Range in New Mexico. The evaluation of the company’s Hand Held Precision Targeting Device, or HHPTD, was conducted...
 

 

China’s first New-Generation Boeing Jetliner B747-8 delivered to Air China

In the evening of Sept. 29 29 in Seattle, Beijing time, Air China and Boeing held a grand aircraft delivery ceremony in Seattle, the United States, marking the official delivery of China’s first B747-8 to Air China. The type is a member of the latest generation B747 family. It will arrive at Beijing Capital International...
 
 

Raytheon awarded $251 million Tomahawk missile contract

The U.S. Navy has awarded Raytheon a $251 million contract to procure Tomahawk Block IV tactical cruise missiles for fiscal year 2014 with an option for 2015. The contract calls for Raytheon to build and deliver Tomahawk Block IV cruise missiles to the U.S. Navy and U.K. Royal Navy. Raytheon will also conduct flight tests...
 
 
Raytheon photograph

Poland’s TELDAT, Raytheon partner to develop new Patriot router

Raytheon photograph TELDAT President and CEO Henryk Kruszynski and Daniel J Crowley, president, Raytheon Integrated Defense Systems. Raytheon is partnering with TELDAT to develop and produce advanced militarized routers for the...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>