Business

May 31, 2013

Lab effort to cut costs for Navy’s Triton UAS program

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability (CSI) program office at Naval Air Station Patuxent River, Md., views imagery transmitted from sensors aboard an aircraft. His team stood up a government-led image quality lab here in 2012 that will help determine how to effectively employ sensors and radars for the MQ-4C Triton and potentially other manned and unmanned aircraft in the future.

An engineer at Naval Air Station Patuxent River is leading an initiative that will save the Navy’s MQ-4C Triton Unmanned Aircraft System program several hundred thousand dollars.

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability program office, launched an image quality lab in 2012 that will help determine how to effectively employ Triton’s sensors and radars and potentially other manned and unmanned systems.

In preparation for the first Triton image evaluation, Weinstein, a former National Geospatial-Intelligence Agency employee, worked with the agency to provide the necessary training, software and image scientists for the first official evaluation of the P-8A aircraft’s Electro-Optical sensor. Since the P-8A and MQ-4C are part of the Maritime Patrol and Reconnaissance Force family of systems, Weinstein’s team made a decision to evaluate the P-8 first and include test engineers from both programs.

“Paul did an outstanding job getting this image quality assessment capability set up and running,” said Pat Ellis, MQ-4C Triton’s Mission Systems lead. “This will save the Triton program several hundred thousand dollars, since we will not have to submit packages for image ratings to NGA and the Office of Naval Intelligence for our imaging systems.”

Without this capability at Pax River, the Navy would have to rely on NGA to perform sensor testing, at a cost of more than $150,000 per evaluation. It would also take more than a month to return the analysis to the team. By having the lab at Pax, each test is virtually free and it takes less than one week to turn around the data to the test team, Weinstein said.

“This level of testing will enable program offices to make smart budget decisions with respect to changes to the current network and current integration measures as well as future integration efforts,” Ellis said.

Typically, image analysts perform this function, but the evaluation proved that test engineers can analyze images and make effective mission-planning decisions.

“We are following the fly-fix-fly philosophy as we figure out solutions that will allow lower bandwidth platforms to send better quality video,” Weinstein added. “We need to understand if a platform can meet its mission and avoid it just flying out and burning fuel.”

The first imagery evaluation for MQ-4C Triton will be conducted after the team has data available from Triton’s first flight, which was conducted May 22 at Northrop Grumman’s facility in Palmdale, Calif. The image-quality lab team will evaluate the MQ-4C’s EO/Infrared and Synthetic Aperture Radar sensors.

“The ability to collect and share real-time Intelligence, Surveillance and Reconnaissance quickly and accurately is crucial to ensuring battle commanders have the enhanced situational awareness required for a successful mission,” said Capt. Jim Hoke, MQ-4C Triton program manager.

As an adjunct to the manned P-8 aircraft, Triton is intended to provide persistent maritime and littoral ISR data collection and dissemination capability to the fleet.

 




All of this week's top headlines to your email every Friday.


 
 

 
Lockheed Martin photograph

Turning up the heat

Lockheed Martin photograph Lockheed Martin ATHENA laser weapon system defeats a truck target by disabling the engine, demonstrating its military effectiveness against enemy ground vehicles. Latest evolution of Lockheed Martin l...
 
 

Sikorsky S-97 RAIDERô team begins final assembly of second aircraft

Sikorsky Aircraft Corp., a subsidiary of United Technologies Corp., announced March 4 the start of final assembly of the second S-97 RAIDERô helicopter at the company’s Development Flight Center. Along with a team of industry suppliers, Sikorsky is developing two RAIDERô prototypes to demonstrate the revolutionary new capabilities in improved maneuverability and flight speed. The...
 
 

Sikorsky awarded $8 million contract for Phase 1 ALIAS program

Sikorsky Aircraft Corp. announced March 4 that the Defense Advanced Research Projects Agency has awarded the company an $8 million contract for Phase 1 of the Aircrew Labor In-Cockpit Automation System program. Sikorsky Aircraft is a subsidiary of United Technologies Corp. The objective of DARPA’s ALIAS program is to develop and insert new automation into...
 

 

Global Hawk sees decrease in cost per flight hour amidst increased operational tempo

The U.S. Air Force RQ-4 Global Hawk high-altitude, long-endurance autonomous unmanned aircraft system had another remarkable year in 2014, with a significant decrease in cost per flight hour coupled with a sharp increase in flight hours. The Global Hawk program has brought the system’s cost per flight hour down to the point of being half...
 
 
LM-AEHF

Ingenuity drives Lockheed’s AEHF program to production milestone early

Lockheed Martin has successfully integrated the propulsion core and payload module for the fourth Advanced Extremely High Frequency (AEHF) satellite nearly five months ahead of schedule. Reaching this critical milestone early a...
 
 

First all-electric propulsion satellites send first on-orbit signals

Two Boeing 702SP (small platform) satellites, the first all-electric propulsion satellites to launch, have sent initial signals from space, marking the first step toward ABS, based in Bermuda, and Eutelsat, based in Paris, being able to provide enhanced communication services to their customers. Whatís more, the satellites were launched as a conjoined stack on a...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>