Business

May 31, 2013

Lab effort to cut costs for Navy’s Triton UAS program

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability (CSI) program office at Naval Air Station Patuxent River, Md., views imagery transmitted from sensors aboard an aircraft. His team stood up a government-led image quality lab here in 2012 that will help determine how to effectively employ sensors and radars for the MQ-4C Triton and potentially other manned and unmanned aircraft in the future.

An engineer at Naval Air Station Patuxent River is leading an initiative that will save the Navy’s MQ-4C Triton Unmanned Aircraft System program several hundred thousand dollars.

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability program office, launched an image quality lab in 2012 that will help determine how to effectively employ Triton’s sensors and radars and potentially other manned and unmanned systems.

In preparation for the first Triton image evaluation, Weinstein, a former National Geospatial-Intelligence Agency employee, worked with the agency to provide the necessary training, software and image scientists for the first official evaluation of the P-8A aircraft’s Electro-Optical sensor. Since the P-8A and MQ-4C are part of the Maritime Patrol and Reconnaissance Force family of systems, Weinstein’s team made a decision to evaluate the P-8 first and include test engineers from both programs.

“Paul did an outstanding job getting this image quality assessment capability set up and running,” said Pat Ellis, MQ-4C Triton’s Mission Systems lead. “This will save the Triton program several hundred thousand dollars, since we will not have to submit packages for image ratings to NGA and the Office of Naval Intelligence for our imaging systems.”

Without this capability at Pax River, the Navy would have to rely on NGA to perform sensor testing, at a cost of more than $150,000 per evaluation. It would also take more than a month to return the analysis to the team. By having the lab at Pax, each test is virtually free and it takes less than one week to turn around the data to the test team, Weinstein said.

“This level of testing will enable program offices to make smart budget decisions with respect to changes to the current network and current integration measures as well as future integration efforts,” Ellis said.

Typically, image analysts perform this function, but the evaluation proved that test engineers can analyze images and make effective mission-planning decisions.

“We are following the fly-fix-fly philosophy as we figure out solutions that will allow lower bandwidth platforms to send better quality video,” Weinstein added. “We need to understand if a platform can meet its mission and avoid it just flying out and burning fuel.”

The first imagery evaluation for MQ-4C Triton will be conducted after the team has data available from Triton’s first flight, which was conducted May 22 at Northrop Grumman’s facility in Palmdale, Calif. The image-quality lab team will evaluate the MQ-4C’s EO/Infrared and Synthetic Aperture Radar sensors.

“The ability to collect and share real-time Intelligence, Surveillance and Reconnaissance quickly and accurately is crucial to ensuring battle commanders have the enhanced situational awareness required for a successful mission,” said Capt. Jim Hoke, MQ-4C Triton program manager.

As an adjunct to the manned P-8 aircraft, Triton is intended to provide persistent maritime and littoral ISR data collection and dissemination capability to the fleet.

 




All of this week's top headlines to your email every Friday.


 
 

 
Courtesy photograph

Lockheed Martin acquires high-speed wind tunnel, plans upgrades

Courtesy photograph A RATTLRS cruise-missile inlet undergoes testing at the High Speed Wind Tunnel at Lockheed Martin Missiles and Fire Control in Grand Prairie. Lockheed Martin recently purchased the facility and plans numerou...
 
 
Lockheed Martin photograph by Andrew McMurtrie

Off they go: Three more C-130Js delivered

Lockheed Martin photograph by Andrew McMurtrie March 19, a U.S. Air Force crew took delivery of and ferried an MC-130J Commando II Special Operations tanker aircraft that is assigned to Air Force Special Operations Command’s ...
 
 

Northrop to provide DIRCM for Canadian Chinook fleet

Northrop Grumman has been selected by the Royal Canadian Air Force to provide infrared missile protection on its fleet of CH-147F Chinooks. “Battle-tested in the harshest conditions and in use around the world, Northrop Grumman’s infrared countermeasure systems have been protecting warfighters for more than 50 years,” said Carl Smith, vice president, infrared countermeasures, ...
 

 

UTC Aerospace awarded contract for surface ship sonar domes

UTC Aerospace Systems has received a contract from the Naval Surface Warfare Center – Crane, Indiana, to provide sonar domes for surface combat ships. The five-year indefinite delivery, indefinite quantity contract is valued at up to $39 million and covers deliveries through 2020 to the U.S. Navy and foreign military sales. In addition to the...
 
 

General Dynamics-built digital modular radios connect with Army Manpack radio

The General Dynamics Mission Systems-built four-channel Digital Modular Radios successfully completed a Mobile User Objective System satellite communications test at the General Dynamics MUOS test facility in Scottsdale, Ariz. Using the MUOS satellite communications and ground station simulators, the DMR radio successfully completed voice calls and data transmission to and from the DMR to an...
 
 

General Dynamics awarded $23 million for Buffalo vehicle upgrades

The U.S. Army TACOM Lifecycle Management Command awarded General Dynamics Land Systems a $22.7 million contract for updates and revisions to all logistic requirements and data in support of the Buffalo A2 M1272 vehicle. General Dynamics Land Systems is a business unit of General Dynamics. The Buffalo A2 is a heavily armored truck specifically designed...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>