Business

May 31, 2013

Lab effort to cut costs for Navy’s Triton UAS program

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability (CSI) program office at Naval Air Station Patuxent River, Md., views imagery transmitted from sensors aboard an aircraft. His team stood up a government-led image quality lab here in 2012 that will help determine how to effectively employ sensors and radars for the MQ-4C Triton and potentially other manned and unmanned aircraft in the future.

An engineer at Naval Air Station Patuxent River is leading an initiative that will save the Navy’s MQ-4C Triton Unmanned Aircraft System program several hundred thousand dollars.

Paul Weinstein, an electronics engineer supporting the Common Standards and Interoperability program office, launched an image quality lab in 2012 that will help determine how to effectively employ Triton’s sensors and radars and potentially other manned and unmanned systems.

In preparation for the first Triton image evaluation, Weinstein, a former National Geospatial-Intelligence Agency employee, worked with the agency to provide the necessary training, software and image scientists for the first official evaluation of the P-8A aircraft’s Electro-Optical sensor. Since the P-8A and MQ-4C are part of the Maritime Patrol and Reconnaissance Force family of systems, Weinstein’s team made a decision to evaluate the P-8 first and include test engineers from both programs.

“Paul did an outstanding job getting this image quality assessment capability set up and running,” said Pat Ellis, MQ-4C Triton’s Mission Systems lead. “This will save the Triton program several hundred thousand dollars, since we will not have to submit packages for image ratings to NGA and the Office of Naval Intelligence for our imaging systems.”

Without this capability at Pax River, the Navy would have to rely on NGA to perform sensor testing, at a cost of more than $150,000 per evaluation. It would also take more than a month to return the analysis to the team. By having the lab at Pax, each test is virtually free and it takes less than one week to turn around the data to the test team, Weinstein said.

“This level of testing will enable program offices to make smart budget decisions with respect to changes to the current network and current integration measures as well as future integration efforts,” Ellis said.

Typically, image analysts perform this function, but the evaluation proved that test engineers can analyze images and make effective mission-planning decisions.

“We are following the fly-fix-fly philosophy as we figure out solutions that will allow lower bandwidth platforms to send better quality video,” Weinstein added. “We need to understand if a platform can meet its mission and avoid it just flying out and burning fuel.”

The first imagery evaluation for MQ-4C Triton will be conducted after the team has data available from Triton’s first flight, which was conducted May 22 at Northrop Grumman’s facility in Palmdale, Calif. The image-quality lab team will evaluate the MQ-4C’s EO/Infrared and Synthetic Aperture Radar sensors.

“The ability to collect and share real-time Intelligence, Surveillance and Reconnaissance quickly and accurately is crucial to ensuring battle commanders have the enhanced situational awareness required for a successful mission,” said Capt. Jim Hoke, MQ-4C Triton program manager.

As an adjunct to the manned P-8 aircraft, Triton is intended to provide persistent maritime and littoral ISR data collection and dissemination capability to the fleet.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines January 28, 2015

News: Panel will propose new military retirement system - The long-awaited report on military compensation set to drop Thursday will propose fundamental changes to military retirement and health care benefits, according to several people familiar with the report. Source: DOD to request $585 billion for fiscal 2016 - The Department of Defense is preparing to submit a...
 
 

News Briefs January 28, 2015

Defense contractor to pay $2 million to settle claims A Northern California defense contractor will pay the federal government $2 million to settle claims about its manufacturing of parts for remote-controlled aircraft. The U.S. Attorney’s Office in Sacramento says Sacramento-based Composite Engineering Inc. agreed to pay the money to end allegations that it artificially inflated...
 
 
Navy photograph

USS Roosevelt marks 200,000 trap

Navy photograph An F/A-18F Super Hornet flown by Capt. Daniel Grieco, commanding officer of the aircraft carrier USS Theodore Roosevelt (CVN 71), and Capt. Benjamin Hewlett, deputy commander of Carrier Air Wing (CVW) 1, complet...
 

 
Navy photograph by PO1 William Larned

USS California returns from maiden deployment

Navy photograph by PO1 William Larned The Virginia-class attack submarine USS California (SSN 781) returns from its maiden deployment to its homeport at Naval Submarine Base New London. Under the command of Cmdr. Shawn Huey, Ca...
 
 
Army photograph

Army proves new watercraft capabilities

Army photograph Marine Corps assets are loaded onto the USNS Sgt. Matej Kocak (T-AK 3005), from an U.S. Army Landing Craft Utility, or LCU, USAV Port Hudson during port operations, at White Beach Naval Base, Jan. 22, 2015. Sold...
 
 

Orbital stockholders approve merger with ATK’s aerospace, defense groups

Orbital Sciences Corporation announced Jan. 27 that at a special meeting, the company’s stockholders voted overwhelmingly to approve the proposed merger with the Aerospace and Defense Groups of Alliant Techsystems Inc., pursuant to the definitive transaction agreement dated April 28, 2014. Approximately 99 percent of the votes cast at the special meeting voted in favor...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>