Space

June 3, 2013

NASA’s Hubble will use rare stellar alignment to hunt for planets

NASA’s Hubble Space Telescope will have two opportunities in the next few years to hunt for Earth-sized planets around the red dwarf Proxima Centauri.

The opportunities will occur in October 2014 and February 2016 when Proxima Centauri, the star nearest to our sun, passes in front of two other stars. Astronomers plotted Proxima Centauri’s precise path in the heavens and predicted the two close encounters using data from Hubble.

“Proxima Centauri’s trajectory offers a most interesting opportunity because of its extremely close passage to the two stars,” said Kailash Sahu, an astronomer with the Space Science Telescope Institute in Baltimore, Md. Sahu leads a team of scientists whose work he presented Monday at the 222nd meeting of American Astronomical Society in Indianapolis.

Red dwarfs are the most common class of stars in our Milky Way galaxy. Any such star ever born is still shining today. There are about 10 red dwarfs for every star like our sun. Red dwarfs are less massive than other stars. Because lower-mass stars tend to have smaller planets, red dwarfs are ideal places to go hunting for Earth-sized planets.

Previous attempts to detect planets around Proxima Centauri have not been successful. But astronomers believe they may be able to detect smaller terrestrial planets, if they exist, by looking for microlensing effects during the two rare stellar alignments.

Microlensing occurs when a foreground star passes close to our line of sight to a more distant background star. These images of the background star may be distorted, brightened and multiplied depending on the alignment between the foreground lens and the background source.

These microlensing events, ranging from a few hours to a few days in duration, will enable astronomers to measure precisely the mass of this isolated red dwarf. Getting a precise determination of mass is critical to understanding a star’s temperature, diameter, intrinsic brightness and longevity.

Astronomers will measure the mass by examining images of each of the background stars to see how far the stars are offset from their real positions in the sky. The offsets are the result of Proxima Centauri’s gravitational field warping space. The degree of offset can be used to measure Proxima Centauri’s mass. The greater the offset, the greater the mass of Proxima Centauri. If the red dwarf has any planets, their gravitational fields will produce a second small position shift.

Because Proxima Centauri is so close to Earth, the area of sky warped by its gravitation field is larger than for more distant stars. This makes it easier to look for shifts in apparent stellar position caused by this effect. However, the position shifts will be too small to be perceived by any but the most sensitive telescopes in space and on the ground. The European Space Agency’s Gaia space telescope and the European Southern Observatory’s Very Large Telescope on Mt. Cerro Paranal in Chile may be able to make measurements comparable to Hubble’s.

To identify possible alignment events, Sahu’s team searched a catalog of 5,000 stars with a high rate of angular motion across the sky and singled out Proxima Centauri. It crosses a section of sky with the apparent width of the full moon as observed from Earth every 600 years.




All of this week's top headlines to your email every Friday.


 
 

 
NASA, ESA, PSI, JHU/APL, STScI/AURA image

Close encounters: Comet Siding Spring seen next to Mars

NASA, ESA, PSI, JHU/APL, STScI/AURA image This composite NASA Hubble Space Telescope Image captures the positions of comet Siding Spring and Mars in a never-before-seen close passage of a comet by the Red Planet, which happened...
 
 

NASA Astronaut Scott Kelly shares bullying prevention message ahead of one-year mission

NASA astronaut Scott Kelly, who is scheduled to fly on a one-year spaceflight mission in 2015, is lending his voice to help reduce childhood bullying. As part of Bullying Prevention Awareness Month, Kelly recorded a special message encouraging bystanders to take action. “Be more than just a bystander,” said Kelly in the message. “Take action...
 
 

NASA seeks ultra-lightweight materials to help enable journey to Mars

NASA is seeking proposals to develop and manufacture ultra-lightweight materials for aerospace vehicles and structures of the future. Proposals will demonstrate lower-mass alternatives to honeycomb or foam cores currently used in composite sandwich structures. Composite sandwich structures are a special type of material made by attaching two thin skins to a lightweight core. This type...
 

 

Boeing concludes commercial crew space act agreement for CST-100/Atlas V

Boeing has successfully completed the final milestone of its Commercial Crew Integrated Capability Space Act Agreement with NASA. The work and testing completed under the agreement resulted in significant maturation of Boeing’s crew transportation system, including the CST-100 spacecraft and Atlas V rocket. NASA in July approved the Critical Design Review Board milestone for Boeing’...
 
 

NASA partners with leading technology innovators to enable future exploration

Recognizing that technology drives exploration, NASA has selected four teams of agency technologists for participation in the Early Career Initiative pilot program. The program encourages creativity and innovation among early career NASA technologists by engaging them in hands-on technology development opportunities needed for future missions. NASA’s Space Technology Mission Directorate c...
 
 

New commercial rocket descent data may help NASA with future Mars landings

NASA successfully captured thermal images of a SpaceX Falcon 9 rocket on its descent after it launched in September from Cape Canaveral Air Force Station, Fla. The data from these thermal images may provide critical engineering information for future missions to the surface of Mars. “Because the technologies required to land large payloads on Mars...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>