Space

June 5, 2013

NASA’s Spitzer sees Milky Wayís blooming countryside

New views from NASA’s Spitzer Space Telescope show blooming stars in our Milky Way galaxy’s more barren territories, far from its crowded core.

The images are part of the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (Glimpse 360) project, which is mapping the celestial topography of our galaxy. The map and a full, 360-degree view of the Milky Way plane will be available later this year. Anyone with a computer may view the Glimpse images and help catalog features.

We live in a spiral collection of stars that is mostly flat, like a vinyl record, but it has a slight warp. Our solar system is located about two-thirds of the way out from the Milky Way’s center, in the Orion Spur, an offshoot of the Perseus spiral arm. Spitzer’s infrared observations are allowing researchers to map the shape of the galaxy and its warp with the most precision yet.

While Spitzer and other telescopes have created mosaics of the galaxy’s plane looking in the direction of its center before, the region behind us, with its sparse stars and dark skies, is less charted.

“We sometimes call this flyover country,” said Barbara Whitney, an astronomer from the University of Wisconsin at Madison, who uses Spitzer to study young stars. “We are finding all sorts of new star formation in the lesser-known areas at the outer edges of the galaxy.”

Whitney and colleagues are using the data to find new sites of youthful stars. For example, they spotted an area near Canis Major with 30 or more young stars sprouting jets of material, an early phase in their lives. So far, the researchers have identified 163 regions containing these jets in the Glimpse 360 data, with some of the young stars highly clustered in packs and others standing alone.

Robert Benjamin is leading a University of Wisconsin team that uses Spitzer to more carefully pinpoint the distances to stars in the galaxy’s hinterlands. The astronomers have noticed a distinct and rapid drop-off of red giants, a type of older star, at the edge of the galaxy. They are using this information to map the structure of the warp in the galaxy’s disk.

“With Spitzer, we can see out to the edge of the galaxy better than before,” said Robert Benjamin of the University of Wisconsin, who presented the results Wednesday at the 222nd meeting of the American Astronomical Society in Indianapolis. “We are hoping this will yield some new surprises.”

Thanks to Spitzer’s infrared instruments, astronomers are capturing improved images of those remote stellar lands. Data from NASA’s Wide-field Infrared Survey Explorer (WISE) are helping fill in gaps in the areas Spitzer did not cover. WISE was designed to survey the entire sky twice in infrared light, completing the job in early 2011, while Spitzer continues to probe the infrared sky in more detail. The results are helping to canvas our galaxy, filling in blanks in the outer expanses where not much is known.
Glimpse 360 already has mapped 130 degrees of the sky around the galactic center.

Four new views from the area looking away from the galactic center are online at http://go.nasa.gov/ZtA1Sn.

Members of the public continue scouring images from earlier Glimpse data releases in search of cosmic bubbles indicative of hot, massive stars. Astronomers’ knowledge of how massive stars influence the formation of other stars is benefitting from this citizen science activity, called The Milky Way Project.

For instance, volunteers identified a striking multiple bubble structure in a star-forming region called W39. Follow up work by the researchers showed the smaller bubbles were spawned by a larger bubble that had been carved out by massive stars.

“This crowdsourcing approach really works,” said Charles Kerton of Iowa State University at Ames, who also presented results. “We are examining more of the hierarchical bubbles identified by the volunteers to understand the prevalence of triggered star formation in our galaxy.”

For more information about the Milky Way project and to learn how to participate, visit http://www.milkywayproject.org.




All of this week's top headlines to your email every Friday.


 
 

 
ATK

ATK completes installation of world’s largest solid rocket motor for ground test

ATK The first qualification motor for NASA’s Space Launch Systems booster is installed in ATK’s test stand in Utah – ready for a March 11 static-fire test. NASA and ATK have completed installing the first Spac...
 
 
ULA photograph

Third Lockheed Martin-built MUOS satellite launched, responding to commands

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Complex 41 at...
 
 
ULA photograph

ULA successfully launches Navy’s Mobile User Objective System-3

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System (MUOS) satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Comple...
 

 

Aerojet Rocketdyne Propulsion supports launch, flight of third MUOS satellite

Aerojet Rocketdyne played a critical role in successfully placing the third of five planned Mobile User Objective System (MUOS-3) satellites, designed and built by Lockheed Martin, into orbit for the U.S. Navy. The mission was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket, with five Aerojet...
 
 
LM-MUOS-satellite

U.S. Navy poised to Launch Lockheed Martin-built MUOS-3 satellite

The U.S. Navy and Lockheed Martin are ready to launch the third Mobile User Objective System satellite, MUOS-3, from Cape Canaveral Air Force Station, Fla., Jan. 20 aboard a United Launch Alliance Atlas V rocket. The launch win...
 
 

NASA, NOAA find 2014 warmest year in modern record

https://www.youtube.com/embed/-ilg75uJZZU?enablejsapi=1&rel=0 The year 2014 ranks as Earth’s warmest since 1880, according to two separate analyses by NASA and National Oceanic and Atmospheric Administration scientists. The 10 warmest years in the instrumental record, with the exception of 1998, have now occurred since 2000. This trend continues a long-term warming of the planet, acc...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>