Space

June 7, 2013

NASA’s Orion spacecraft proves sound under pressure

After a month of being poked, prodded and pressurized in ways that mimicked the stresses of spaceflight, NASA’s Orion crew module successfully passed its static loads tests on Wednesday.

When Orion launches on Exploration Flight Test-1 (EFT-1), which is targeted for September 2014, it will travel farther from Earth than any spacecraft built for humans in more than 40 years.

The spacecraft will fly about 3,600 miles above Earth’s surface and return at speeds of approximately 25,000 mph. During the test, Orion will experience an array of stresses, or loads, including launch and reentry, the vacuum of space, and several dynamic events that will jettison hardware away from the spacecraft and deploy parachutes.

To ensure Orion will be ready for its flight test next year, engineers at NASA’s Kennedy Space Center in Florida built a 20-foot-tall static loads test fixture for the crew module with hydraulic cylinders that slowly push or pull on the vehicle, depending on the type of load being simulated. The fixture produced 110 percent of the load caused by eight different types of stress Orion will experience during EFT-1. More than 1,600 strain gauges recorded how the vehicle responded. The loads ranged from as little as 14,000 pounds to as much as 240,000 pounds.

“The static loads campaign is our best method of testing to verify what works on paper will work in space,” said Charlie Lundquist, NASA’s Orion crew and service module manager at the agency’s Johnson Space Center in Houston. “This is how we validate our design.”

In addition to the various loads it sustained, the Orion crew module also was pressurized to simulate the effect of the vacuum in space. This simulation allowed engineers to confirm it would hold its pressurization in a vacuum and verify repairs made to superficial cracks in the vehicle’s rear bulkhead caused by previous pressure testing in November.

The November test revealed insufficient margin in an area of the bulkhead that was unable to withstand the stress of pressurization. Armed with data from that test, engineers were able to reinforce the design to ensure structural integrity and validate the fix during this week’s test.

To repair the cracks, engineers designed brackets that spread the stress of being pressurized to other areas of the module that are structurally stronger. During these tests Orion was successfully pressurized to 110 percent of what it would experience in space, demonstrating it is capable of performing as necessary during EFT-1.




All of this week's top headlines to your email every Friday.


 
 

 
nasa-astronaut

Astronaut Stephen Frick retires from NASA

Astronaut Stephen Frick has retired from NASA to accept a position in the private sector. Frick, who flew as both a shuttle pilot and commander, left the Agency July 13. Steve has been a great asset to the astronaut office and ...
 
 
NASA/JPL-CalTech/R. Hurt photograph

NASA’s Kepler mission discovers bigger, older cousin to Earth

NASA/JPL-CalTech/R. Hurt photograph This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of ...
 
 
NASA photograph by A. Gemignani

Launch, docking returns ISS crew to full strength

NASA photograph by A. Gemignani The Soyuz TMA-17M rocket launched from the Baikonur Cosmodrome in Kazakhstan July 22, 2015 carrying Expedition 44 Soyuz Commander Oleg Kononenko of the Russian Federal Space Agency (Roscosmos), F...
 

 
NASA/JHUAPL/SwRI photograph

NASA’s New Horizons team finds haze, flowing ice on Pluto

NASA/JHUAPL/SwRI photograph Pluto sends a breathtaking farewell to New Horizons. Backlit by the sun, Pluto’s atmosphere rings its silhouette like a luminous halo in this image taken by NASA’s New Horizons spacecraft around ...
 
 
NASA photograph

NASA satellite camera provides ‘EPIC’ view of Earth

NASA photograph Earth as seen on July 6, 2015, from a distance of one million miles by a NASA scientific camera aboard the Deep Space Climate Observatory spacecraft. A NASA camera on the Deep Space Climate Observatory (DSCOVR) ...
 
 
NASA/JHUAPL/SWRI photograph

NASA’s New Horizons discovers frozen plains in heart of Pluto’s ‘heart’

In the center left of Pluto’s vast heart-shaped feature – informally named “Tombaugh Regio” — lies a vast, craterless plain that appears to be no more than 100 million years old, and is possibly still being shaped...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>