Space

June 10, 2013

NASA selects new suborbital payloads, total tops 100 experiments

NASA has selected 21 space technology payloads for flights on commercial reusable launch vehicles, balloons, and a commercial parabolic aircraft.

This latest selection represents the sixth cycle of NASA’s continuing call for payloads through an announcement of opportunity. †More than 100 technologies with test flights now have been facilitated through NASA’s Space Technology Mission Directorate’s Flight Opportunities Program.

“This new group of payloads, ranging from systems that support cubesats to new sensors technology for planetary exploration, represent the sorts of cutting-edge technologies that are naturally suited for testing during returnable flights to near-space,” said Michael Gazarik, NASA’s associate administrator for space technology in Washington. “NASA’s Flight Opportunities Program continues to mature this key technology development pipeline link, thanks to America’s commercial suborbital reusable vehicles providers.”

Fourteen of these new payloads will ride on parabolic aircraft flights, which provide brief periods of weightlessness. Two will fly on suborbital reusable launch vehicle test flights. Three will ride on high-altitude balloons that fly above 65,000 feet. An additional payload will fly on both a parabolic flight and a suborbital launch vehicle, and another will fly on both a suborbital launch vehicle and a high-altitude balloon platform. These payload flights are expected to take place now through 2015.

Flight opportunities currently include the Zero-G Corporation parabolic airplane under contract with the Reduced Gravity Office at NASA’s Johnson Space Center in Houston; Near Space Corp. high-altitude balloons; and reusable launch vehicles from Armadillo Aerospace, Masten Space Systems, UP Aerospace and Virgin Galactic. Additional commercial suborbital flight vendors under contract to NASA, including XCOR and Whittinghill, also will provide flight services.

Payloads selected for flight on a parabolic aircraft are:

  • * “Technology Maturation of a Dual-Spinning Cubesat Bus,” Kerri Cahoy, Massachusetts Institute of Technology, Cambridge
  • * “Testing Near-Infrared Neuromonitoring Devices for Detecting Cerebral Hemodynamic Changes in Parabolic Flight,” Gary Strangman, Massachusetts General Hospital, Boston
  • * “Resilient Thermal Panel: Microgravity Effects on Isothermality of Structurally Embedded Two Dimensional Heat Pipes,” Andrew Williams, Air Force Research Laboratory, Albuquerque, N.M.
  •  “Wireless Strain Sensing System for Space Structural Health Monitoring,” Haiying Huang, University of Texas, Austin
  •  “Monitoring tissue oxygen saturation in microgravity,” Thomas Smith, Oxford University, United Kingdom
  •  “Testing the deployment and rollout of the DragEN electrodynamic tether for Cubesats,” Jason Held, Saber Astronautics Australia Pty Ltd., Australia
  •  “Creation of Titanium-Based Nanofoams in Reduced Gravity for Dye-Sensitized Solar Cell Production,” Kristen Scotti, Northwestern University, Evanston, Ill.
  •  “Testing a Cubesat Attitude Control System in Microgravity Conditions,” Eric Bradley, University of Central Florida, Orlando
  •  “Demonstration of Adjustable Fluidic Lens in Microgravity,” James Schwiegerling, University of Arizona, Tucson
  •  “Optical Coherence Tomography (OCT) in Microgravity,” Douglas Ebert, Wyle Laboratories, Houston
  •  “DYMAFLEX: DYnamic MAnipulation FLight Experiment,” David Akin of University, Maryland, College Park
  •  “Characterizing Cubesat Deployer Dynamics in a Microgravity Environment,” Kira Abercromby, California Polytechnic State University, San Luis Obispo
  •  “Demonstration of Food Processing Equipment,” Susana Carranza, Makel Engineering Inc., Chino, Calif.
  •  “Advanced Optical Mass Measurement System,” Jason Reimuller, Mass Dynamix Inc., Longwood, Fla.

Payloads selected for flight on a suborbital reusable launch vehicle are:

  •  “Precision Formation Flying Sensor,” Webster Cash, University of Colorado, Boulder
  •  “Navigation Doppler Lidar Sensor Demonstration for Precision Landing on Solar System Bodies,” Farzin Amzajerdian, NASA’s Langley Research Center, Hampton, Va.

Payloads selected for flight on a high altitude balloon are:

  •  “Planetary Atmosphere Minor Species Sensor,” Robert Peale, University of Central Florida, Orlando
  •  “Satellite-Based ADS-B Operations Flight Test,” Russell Dewey, GSSL Inc., Tillamook, Ore.
  •  “Low-Cost Suborbital Reusable Launch Vehicle (sRLV) Surrogate,” Timothy Lachenmeier, GSSL Inc.

One payload will be manifested†on a parabolic aircraft and a suborbital reusable launch vehicle:

  •  “Real Time Conformational Analysis of Rhodopsin using Plasmon Waveguide Resonance Spectroscopy,” Victor Hruby, University of Arizona, Tucson.

One payload will be manifested† on a suborbital reusable launch vehicle and a high altitude balloon:

  • “Test of Satellite Communications Systems on-board Suborbital Platforms to provide low-cost data communications for Research Payloads, Payload Operators, and Space Vehicle Operators,” Brian Barnett, Satwest Consulting, Albuquerque, N.M.

NASA manages the Flight Opportunities manifest, matching payloads with flights, and will pay for payload integration and the flight costs for the selected payloads. No funds are provided for the development of the payloads.

NASA’s Space Technology Mission Directorate, is dedicated to innovating, developing, testing and flying hardware for use in the agency’s future missions. The Flight Opportunities Program is managed at NASA’s Dryden Flight Research Center in Edwards, Calif. NASA’s Ames Research Center at Moffett Field, Calif., manages the technology maturation activities for the program.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines July 7, 2015

News: F-35 loses dogfight to fighter jet from 1980s – A new report alleges that an F-35A was defeated by the very aircraft it is meant to replace.   Business: South Korea selects Airbus for $1.33 billion tanker contract – European aerospace giant Airbus won a $1.33 billion deal June 30 to supply air refueling...
 
 
U.S. Chamber of Commerce photograph

Boeing, Embraer to collaborate on ecoDemonstrator technology tests

U.S. Chamber of Commerce photograph Frederico Curado, president & CEO of Embraer, and Marc Allen, president of Boeing International, at the Brazil-U.S. Business Summit in Washington, D.C. The event occurred during an offici...
 
 
Untitled-2

Tactical reconnaissance vehicle project eyes hoverbike for defense

The U.S. Army Research Laboratory, or ARL, has been exploring the tactical reconnaissance vehicle, or TRV, concept for nearly nine months and is evaluating the hoverbike technology as a way to get Soldiers away from ground thre...
 

 
Air Force photograph by SSgt. William Banton

Upgraded AWACS platform tested at Northern Edge

Air Force photograph by SSgt. William Banton Maintenance crew members prepare an E-3G Sentry (AWACS) for takeoff during exercise Northern Edge June 25, 2015. Roughly 6,000 airmen, soldiers, sailors, Marines and Coast Guardsmen ...
 
 
LM-Legion

Lockheed Martin’s Legion Pod™ takes to skies

Lockheed Martin photograph by Randy Crites Lockheed Martin’s Legion Pod recently completed its first flight test, successfully tracking multiple airborne targets while flying on an F-16 in Fort Worth, Texas. Legion Pod was in...
 
 
Air Force photograph by SSgt. Marleah Robertson

First Marine graduates Air Force’s F-35 intelligence course

Air Force photograph by SSgt. Marleah Robertson Marine Corps 1st Lt. Samuel Winsted, an F-35B Lightning II intelligence officer, provides a mock intelligence briefing to two instructors during the F-35 Intelligence Formal Train...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>