Tech

June 12, 2013

Northrop Grumman delivers second hosted payload for Enhanced Polar System protected communications

REDONDO BEACH, Calif. ñ Northrop Grumman has delivered the second of two payloads that will be hosted on government-owned satellites to bring next-generation protected, Extremely High Frequency communications to users in the north polar region (above 65 ? North).

Developed for the U.S. Air Force’s Enhanced Polar System (EPS), the payload efficiently leverages hardware and software designs Northrop Grumman originally developed for Advanced EHF protected military communication satellites.

“Reuse of existing hardware and software resulted in a highly successful EPS payload development, providing a significant value for Americans,” said Stuart Linsky, vice president, Communication Programs, Northrop Grumman Aerospace Systems. “As we did with the AEHF payloads, both EPS payloads were delivered ahead of the government need.

“Like the first EPS payload, the second successfully used flight-proven components, dramatically lowering development risk, cost and schedule of the highly advanced anti-jam payloads,” Linsky said. “As a result, we kept nonrecurring engineering costs and other expenses associated with first article satellites to an absolute minimum.”

The EPS network will replace the current Interim Polar System and serve as a polar adjunct to the Advanced EHF system.

Both EPS payloads feature an onboard processing unit similar to those on AEHF satellites but scaled down to meet reduced mission capacity requirements. The payloads integrate functions of the Configurable On-board Router, Demodulator and Resource Control Computer/Security Equipment Computer on AEHF payloads into a single eXtended Data Rate Processing Unit on EPS.

EPS payload development began in 2008. The Air Force plans final operational capability for EPS for calendar year 2018. EPS consists of two EHF payloads hosted on government satellites, a Gateway Segment to connect modified Navy Multiband Terminals to other communication systems, a User Terminal Segment and a Control and Planning Segment (CAPS). Northrop Grumman was recently selected to develop the EPS CAPS to operate the EPS payloads.

Northrop Grumman’s foundational payload control and planning capability leverages proven technologies from various heritage programs and the Common Network Planning Software system the company developed for the Wideband Global Satellite program to provide an affordable, scalable ground control capability for future protected satellite communications (SatCom) growth.

The MILSATCOM directorate at the Air Force’s Space and Missile Systems Center at Los Angeles Air Force Base, Calif., is acquiring the Control and Planning and Gateway Segments.

“The successful scaling of AEHF components demonstrated by EPS provides a low risk basis for affordable protected SatCom with AEHF levels of protection at the cost of vulnerable unprotected SatCom,” said Tim Frei, vice president, Communication Systems for Northrop Grumman.

“EPS proves that we can transition Technology Readiness Level 9, anti-jam, low probability of intercept communications into new platforms at low cost and risk, providing real protected SatCom at no more cost than unprotected SatCom,” Frei said. “This will be a game changer for the government. This is part of Northrop Grumman’s broad affordability initiative, which seeks to combine the best commercial technologies with TRL 9-level government technologies. These components include Low Cost Terminals, lower cost satellites, payloads, launch and ground control.”




All of this week's top headlines to your email every Friday.


 
 

 
KMel Robotics photograph

Researchers test insect-inspired robots

KMel Robotics photograph These nano-quads are the size that the U.S. Army Research Laboratory Micro-Autonomous Systems Technology consortium of researchers envision. The current state is about as compact as a microwave oven. &n...
 
 
NASA photograph

NASA teams with South Korean agency to further improve air traffic management

NASA photograph Jaiwon Shin, NASAís associate administrator for Aeronautics Research, and Jaeboong Lee, president of the Korea Agency for Infrastructure Technology Advancement, signed an agreement Nov. 17, 2014 in Seoul, South...
 
 

Air Force funds research on thermal management technology for fighter aircraft

Managing heat that is generated by electronic subsystems in next-generation aircraft is a vexing challenge for aerospace system designers. In the interest of meeting this challenge, the Air Force recently provided follow-on funding for a Small Business Innovation Research effort that is identifying improved methods for heat conduction and rejection from system electronics for advanced...
 

 

Report: Major federal lab misused contract funds

Managers at one of the nation’s premier federal laboratories improperly used taxpayer funds to influence members of Congress and other officials as part of an effort to extend the lab’s $2.4 billion management contract, the U.S. Department of Energy’s Office of Inspector General said in a report Nov. 12. A review of documents determined that...
 
 

Teams announced for NASA 2015 robotics operations competition

Eight universities have advanced to the next round of “RASC-AL Robo-Ops,” a planetary rover robotics engineering competition sponsored by NASA and organized by the National Institute of Aerospace. The teams selected are California State University Long Beach, Massachusetts Institute of Technology, Cambridge; San Jose State University in California; University of Buffalo in New York;...
 
 
NASA photograph by Ken Ulbrich

NASA tests revolutionary shape changing aircraft flap for first time

NASA photograph by Ken Ulbrich For taxi testing Oct. 31, 2014, at NASA’s Armstrong Flight Research Center at Edwards Air Force Base, Calif., the Adaptive Compliant Trailing Edge flap was extended to 20 degrees deflection. Fli...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>