Tech

June 12, 2013

Northrop Grumman delivers second hosted payload for Enhanced Polar System protected communications

REDONDO BEACH, Calif. ñ Northrop Grumman has delivered the second of two payloads that will be hosted on government-owned satellites to bring next-generation protected, Extremely High Frequency communications to users in the north polar region (above 65 ? North).

Developed for the U.S. Air Force’s Enhanced Polar System (EPS), the payload efficiently leverages hardware and software designs Northrop Grumman originally developed for Advanced EHF protected military communication satellites.

“Reuse of existing hardware and software resulted in a highly successful EPS payload development, providing a significant value for Americans,” said Stuart Linsky, vice president, Communication Programs, Northrop Grumman Aerospace Systems. “As we did with the AEHF payloads, both EPS payloads were delivered ahead of the government need.

“Like the first EPS payload, the second successfully used flight-proven components, dramatically lowering development risk, cost and schedule of the highly advanced anti-jam payloads,” Linsky said. “As a result, we kept nonrecurring engineering costs and other expenses associated with first article satellites to an absolute minimum.”

The EPS network will replace the current Interim Polar System and serve as a polar adjunct to the Advanced EHF system.

Both EPS payloads feature an onboard processing unit similar to those on AEHF satellites but scaled down to meet reduced mission capacity requirements. The payloads integrate functions of the Configurable On-board Router, Demodulator and Resource Control Computer/Security Equipment Computer on AEHF payloads into a single eXtended Data Rate Processing Unit on EPS.

EPS payload development began in 2008. The Air Force plans final operational capability for EPS for calendar year 2018. EPS consists of two EHF payloads hosted on government satellites, a Gateway Segment to connect modified Navy Multiband Terminals to other communication systems, a User Terminal Segment and a Control and Planning Segment (CAPS). Northrop Grumman was recently selected to develop the EPS CAPS to operate the EPS payloads.

Northrop Grumman’s foundational payload control and planning capability leverages proven technologies from various heritage programs and the Common Network Planning Software system the company developed for the Wideband Global Satellite program to provide an affordable, scalable ground control capability for future protected satellite communications (SatCom) growth.

The MILSATCOM directorate at the Air Force’s Space and Missile Systems Center at Los Angeles Air Force Base, Calif., is acquiring the Control and Planning and Gateway Segments.

“The successful scaling of AEHF components demonstrated by EPS provides a low risk basis for affordable protected SatCom with AEHF levels of protection at the cost of vulnerable unprotected SatCom,” said Tim Frei, vice president, Communication Systems for Northrop Grumman.

“EPS proves that we can transition Technology Readiness Level 9, anti-jam, low probability of intercept communications into new platforms at low cost and risk, providing real protected SatCom at no more cost than unprotected SatCom,” Frei said. “This will be a game changer for the government. This is part of Northrop Grumman’s broad affordability initiative, which seeks to combine the best commercial technologies with TRL 9-level government technologies. These components include Low Cost Terminals, lower cost satellites, payloads, launch and ground control.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines October 29, 2014

News: Unmanned rocket explodes just six seconds after taking off - A NASA rocket due to be visible across the East Coast on its way to the International Space Station has blown up on the Launchpad. IG: Former chief of wounded warrior office broke law, DOD regs - The Defense Department inspector general has recommended “corrective action”...
 
 

News Briefs October 29, 2014

F-35C makes first landing at Virginia Beach Navy base The Navy says an operational F-35C joint strike fighter has landed at Naval Air Station Oceana for the first time. Naval Air Station Oceana is the Navy’s master jet base on the East Coast. The Navy says the plane came to the Virginia Beach base Oct....
 
 

Time to turn to American technology for space launch

For the first time since the Cold War, the United States has deployed armored reinforcements to Europe. To counter Russia’s aggression, several hundred troops and 20 tanks are now in the Baltic. Yet the U.S. military is still injecting millions into the Russian military industrial complex. In late August, the United Launch Alliance – the...
 

 
Air Force photograph by Joe Davila

Boeing, Air Force demonstrate Minuteman III readiness in flight test

Air Force photograph by Joe Davila Boeing supported the launch of an unarmed Minuteman III intercontinental ballistic missile at Vandenberg Air Force Base, Calif., on Sept. 23, 2014. Boeing supported the U.S. Air Force’s succ...
 
 

Pentagon going to court for refusing to release Sikorsky data

PETALUMA, Calif. – The Pentagon is refusing to release any data on any prime contractors participating in the 25-year-old Comprehensive Subcontracting Plan Test Program. The American Small Business League launched a program in 2010 to expose the fraud and abuse against small businesses the CSPTP had allowed. As a test the ASBL requested the most...
 
 
Northrop Grumman photograph

Raytheon Griffin C flight tests demonstrate in-flight retargeting capability

Northrop Grumman photograph Northrop Grumman has received a contract from the U.S. Marine Corps for low-rate initial production of the AN/TPS-80 Ground/Air Task Oriented Radar (G/ATOR). G/ATOR is the first ground-based multi-mi...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>