Space

June 17, 2013

NASA’s Webb Telescope’s last backbone component completed

Assembly of the backbone of NASA’s James Webb Space Telescope, the primary mirror backplane support structure, is a step closer to completion with the recent addition of the backplane support frame, a fixture that will be used to connect all the pieces of the telescope together.

The backplane support frame will bring together Webb’s center section and wings, secondary mirror support structure, aft optics system and integrated science instrument module. ATK of Magna, Utah, finished fabrication under the direction of the observatory’s builder, Northrop Grumman.

The backplane support frame also will keep the light path aligned inside the telescope during science observations. Measuring 11.5 feet by 9.1 feet by 23.6 feet and weighing 1,102 pounds, it is the final segment needed to complete the primary mirror backplane support structure. This structure will support the observatory’s weight during its launch from Earth and hold its18-piece, 21-foot-diameter primary mirror nearly motionless while Webb peers into deep space.

ATK has begun final integration of the backplane support frame to the backplane center section, which it completed in April 2012 and two backplane wing assemblies, which it completed in March.

“Fabricating and assembling the backplane support frame of this size and stability is a significant technological step as it is one of the largest cryogenic composite structures ever built,” said Lee Feinberg, James Webb Space Telescope optical telescope element manager at NASA’s Goddard Space Flight Center in Greenbelt, Md.

The frame, which was built at room temperature but must operate at temperatures ranging from minus 406 degrees to minus 343 degrees Fahrenheit, will undergo extremely cold, or cryogenic, thermal testing at NASA’s Marshall Space Flight Center in Huntsville, Ala. The backplane support frame and primary mirror backplane support structure will shrink as they cool down in space. The tests, exceeding the low temperatures the telescope’s backbone will experience in space, are to verify the components will be the right size and operate correctly in space.

The primary mirror backplane support structure consists of more than 10,000 parts, all designed, engineered and built by ATK. The support structure will measure about 24 feet tall, 19.5 feet wide and more than 11 feet deep when fully deployed, but weigh only 2,138 pounds with the wing assemblies, center section and backplane support frame attached. When the mission payload and instruments are installed, the fully populated support structure will support more than 7,300 pounds, more than three times its own weight.

The primary mirror backplane support structure also will meet unprecedented thermal stability requirements to minimize heat distortion. While the telescope is operating at a range of extremely cold temperatures, from minus 406 degrees to minus 343 degrees Fahrenheit, the backplane must not vary more than 38 nanometers (approximately 1 one-thousandth the diameter of a human hair).

The primary backplane support structure is made of lightweight graphite materials using and advanced fabrication techniques. The composite parts are connected with precision metallic fittings made of invar and titanium.

“The ATK team is providing program hardware that is arguably the largest and most advanced cryogenic structure ever built,” said Bob Hellekson, ATK’s Webb telescope program manager.

The assembled primary backplane support structure and backplane support frame are scheduled for delivery to Marshall later this year for the extreme cryogenic thermal testing. They will undergo structural static testing at Northrop Grumman’s facilities in Redondo Beach, Calif. in early 2014, and then be combined with the wing assemblies.

The James Webb Space Telescope, the successor to NASA’s Hubble Space Telescope, will be the most powerful space telescope ever built. It will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

 




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA/JPL-Caltech

NASA’s WISE spacecraft discovers most luminous galaxy in universe

Image courtesy of NASA/JPL-Caltech This artist’s concept depicts the current record holder for the most luminous galaxy in the universe. The galaxy, WISE J224607.57-052635.0, is erupting with light equal to more than 300 ...
 
 

Air Force launches hush-hush mini-shuttle into space

A mysterious space plane rocketed into orbit May 20, carrying no crew but a full load of technology experiments. The Air Force launched its unmanned mini-shuttle late morning, May 20. An Atlas V rocket lifted it up and out over the Atlantic. This is the fourth flight for the military research program, which is shrouded...
 
 
Image courtesy NASA TV

Critical NASA research returns to Earth aboard U.S. SpaceX Dragon spacecraft

Image courtesy NASA TV The SpaceX Dragon cargo spacecraft was released from the International Space Station’s robotic arm at 7:04 a.m., EDT, May 21. The capsule then performed a series of departure burns and maneuvers to ...
 

 

NASA, Canadian agency renew agreement to reduce aviation icing risks

On hand to sign the renewal agreement May 21 at the NRC offices in Ottawa, Ontario, were Jaiwon Shin, associate administrator of NASA’s Aeronautics Research Mission Directorate in Washington, and Ian Potter, the NRC’s vice-president of engineering. “The combined efforts of our two agencies will help solve some of the most difficult and challenging weather-related...
 
 
ULA photograph

Space and Missile Systems Center successfully launches the AFSPC-5 mission

ULA photograph An Atlas V rocket successfully launches the AFSPC-5 mission from Cape Canaveral Air Force Station, Fla., May 20, 2015.   The Air Force and its mission partners successfully launched the AFSPC-5 mission aboar...
 
 

NASA’s CubeSat initiative aids in testing of technology for solar sails in space

With help from NASA, a small research satellite to test technology for in-space solar propulsion launched into space May 20 aboard an Atlas V rocket from Cape Canaveral Air Force Station, Fla., as part of the agency’s CubeSat Launch Initiative. The Atlas V sent the U.S. Air Force’s X-37B space plane on its fourth mission,...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>