Space

June 28, 2013

Lockheed Martin-built MUOS satellite encapsulated in launch vehicle payload fairing

The second satellite of the Mobile User Objective System will enable mobile users to communicate securely using smartphone-like features.

The second Mobile User Objective System satellite built by Lockheed Martin for the U.S. Navy was encapsulated into its payload fairing yesterday. It is scheduled to launch July 19 aboard a United Launch Alliance Atlas V launch vehicle.

The MUOS constellation replaces the legacy Ultra High Frequency Follow-On system and delivers secure, prioritized voice and data communications, a first for mobile users who need high-speed mission data on the go.

The first MUOS satellite, launched in 2012, has been providing high quality legacy voice communications for users, and terminals are already testing using the advanced payload that enables data exchanges. More than 20,000 existing terminals are compatible with and can access the MUOS legacy UHF payload, and with the release of the new waveform developed for increased data-handling capacity, many of these terminals could be retro-fitted to access the Wideband Code Division Multiple Access (WCDMA) payload.

This advanced WCDMA payload incorporates commercial technology designed to provide 16 times the number of accesses as the legacy UHF Follow-On system that it replaces.

The geosynchronous constellation consists of four satellites and one on-orbit spare, which are expected to achieve full operational capability in 2015, extending UHF narrowband communications availability well past 2025.

Lockheed Martin Space Systems, Sunnyvale, Calif., is the MUOS prime contractor and system integrator. The Navy’s Program Executive Office for Space Systems, Chantilly, Va., and its Communications Satellite Program Office, San Diego, Calif., are responsible for the MUOS program.

 




All of this week's top headlines to your email every Friday.


 
 

 
NASA image by Eric Stern

NASA announces early stage innovations space tech research grants

NASA image by Eric Stern Advanced thermal protection materials modeling using the Direct Simulation Monte Carlo (DSMC) method simulates the flow through porous TPS materials. Research into these sorts of advanced technologies e...
 
 

NASA awards launch services contract for Ionospheric Connection Explorer

NASA has selected Orbital Sciences Corporation of Dulles, Va., to provide launch services for the Ionospheric Connection Explorer mission. ICON is targeted to launch in June 2017 from the Reagan Test Site on Kwajalein Atoll in the Republic of the Marshall Islands aboard a Pegasus XL launch vehicle from Orbital’s “Stargazer” L-1011 aircraft. The total...
 
 

NASA selects student teams for high-powered rocket challenge

NASA has selected eight teams from middle and high schools across the country to participate in the 2014-2015 NASA Student Launch Challenge, April 7-12, organized by NASA’s Marshall Space Flight Center in Huntsville, Ala. The Student Launch Challenge engages students in a research-based, experiential exploration activity. Teams participating in the challenge must design, build and...
 

 

Northrop Grumman awarded advanced technology microwave sounder JPSS

Northrop Grumman has been awarded a $121 million contract by NASA to build and deliver the third Advanced Technology Microwave Sounder for NOAA’s Joint Polar Satellite System. ATMS provides critical atmospheric temperature and moisture profiles to support weather forecasting. The instrument has 22 channels spanning the frequency band from 23.8 GHz to 183.3 GHz. Under...
 
 
NASA photograph by Jim Yungel

NASA DC-8 continues west Antarctic ice study

NASA photograph by Jim Yungel The Thurston Island calving front off of western Antarctica as seen from the window of NASA’s DC-8 flying observatory Nov. 5, 2014. NASA’s DC-8 flying laboratory has two weeks of suppor...
 
 
NASA photograph by Emmett Given

NASA opens registration for 2015 Exploration Rover Challenge

NASA photograph by Emmett Given Pedaling across a simulated alien landscape of rock, craters and shifting sand is one of the nearly 90 teams of high school, college and university students from across the United States and arou...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>