Space

July 2, 2013

NASA tests game changing composite cryogenic fuel tank

NASA recently completed a major space technology development milestone by successfully testing a pressurized, large cryogenic propellant tank made of composite materials. The composite tank will enable the next generation of rockets and spacecraft needed for space exploration.

Cryogenic propellants are gasses chilled to subfreezing temperatures and condensed to form highly combustible liquids, providing high-energy propulsion solutions critical to future, long-term human exploration missions beyond low-Earth orbit. Cryogenic propellants, such as liquid oxygen and liquid hydrogen, have been traditionally used to provide the enormous thrust needed for large rockets and NASA’s space shuttle.

In the past, propellant tanks have been fabricated out of metals. The almost 8 foot-diameter composite tank tested at NASA’s Marshall Space Flight Center in Huntsville, Ala., is considered game changing because composite tanks may significantly reduce the cost and weight for launch vehicles and other space missions.

“These successful tests mark an important milestone on the path to demonstrating the composite cryogenic tanks needed to accomplish our next generation of deep space missions,” said Michael Gazarik, NASA’s associate administrator for space technology at NASA Headquarters in Washington. “This investment in game changing space technology will help enable NASA’s exploration of deep space while directly benefiting American industrial capability in the manufacturing and use of composites.”

Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. A potential initial target application for the composite technology is an upgrade to the upper stage of NASA’s Space Launch System heavy-lift rocket.

Built by Boeing at their Tukwila, Wash., facility, the tank arrived at NASA in late 2012. Engineers insulated and inspected the tank, then put it through a series of pressurized tests to measure its ability to contain liquid hydrogen at extremely cold temperatures. The tank was cooled down to -423 degrees Fahrenheit and underwent 20 pressure cycles as engineers changed the pressure up to 135 psi.

“This testing experience with the smaller tank is helping us perfect manufacturing and test plans for a much larger tank,” said John Vickers, the cryogenic tank project manager at Marshall. “The 5.5 meter (18 foot) tank will be one of the largest composite propellant tanks ever built and will incorporate design features and manufacturing processes applicable to an 8.4 meter (27.5 foot) tank, the size of metal tanks found in today’s large launch vehicles.”

The NASA and Boeing team are in the process of manufacturing the 18 foot (5.5 meter)-diameter composite tank that also will be tested at Marshall next year.

“The tank manufacturing process represents a number of industry breakthroughs, including automated fiber placement of oven-cured materials, fiber placement of an all-composite tank wall design that is leak-tight and a tooling approach that eliminates heavy-joints,” said Dan Rivera, the Boeing cryogenic tank program manager at Marshall.

Composite tank joints, especially bolted joints, have been a particularly troubling area prone to leaks in the past. Boeing and its partner, Janicki Industries of Sedro-Woolley, Wash., developed novel tooling to eliminate the need for heavy joints.

“Boeing has experience building large composite structures, and Marshall has the facilities and experience to test large tanks,” explained John Fikes, the cryogenic tank deputy project manager at Marshall. “It has been a team effort, with Boeing working with NASA to monitor the tests and gather data to move forward and build even larger, higher performing tanks.”

“Game changing is about developing transformative technologies that enable new missions and new capabilities,” said Stephen Gaddis, the program manager for the Game Changing Development Program at NASA’s Langley Research Center in Hampton, Va. “Technological advances like the cryogenic tank can ripple throughout the aerospace industry and change the way we do business.”

Video link: http://tinyurl.com/l2pa2rp

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 14, 2014

Business: U.S. Navy looks to leverage submarine work to keep costs down - The U.S. Navy hopes to save money and time by leveraging industry investments as it replaces its Ohio-class nuclear-armed submarines with the Virginia-class attack submarines now built by General Dynamics Corp and Huntington Ingalls Industries Inc.  Study raises red flags on California aerospace...
 
 

News Briefs April 14, 2014

U.S. Navy destroyer Zumwalt christened in Maine The U.S. Navy has christened the first ship of its newest class of destroyers, a 610-foot (186-meter)-long warship with advanced technologies and a stealthy design that will reduce its visibility on enemy radars. The warship bears the name of the late Adm. Elmo ìBudî Zumwalt, who became the...
 
 
Navy photograph by Seamn Edward Guttierrez III

Russian aircraft flies near U.S. Navy ship in Black Sea

Navy photograph by Seamn Edward Guttierrez III Sailors man the rails as the Arleigh Burke-class guided-missile destroyer USS Donald Cook arrives at Naval Station Rota, Spain, Feb. 11, 2014. Donald Cook is the first of four Arle...
 

 

45th Space Wing launches NRO Satellite on board Atlas V

The 45th Space Wing successfully launched a United Launch Alliance Atlas V rocket from Space Launch Complex 41, Vandenberg Air Force Base, Calif., at 1:45 p.m. April 10 carrying a classified national security payload. The payload was designed and built by the National Reconnaissance Office. “I am proud of the persistence and focus of the...
 
 

U.S. Air Force selects Cubic for Moroccan P5 air combat training system

Cubic Defense Systems, a subsidiary of Cubic Corporation announced April 11 it has been awarded a contract valued at more than $5 million from the U.S. Air Force to supply its P5 Combat Training System to the Moroccan Air Force. Morocco will join the United States Air Force, Navy, and Marine Corps, along with a...
 
 
Lockheed Martin photograph

NASA’s Orion Spacecraft powers through first integrated system testing

Lockheed Martin photograph Engineers in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, perform avionics testing on the Orion spacecraft being prepared for its first trip to space later this ye...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>