Business

July 10, 2013

Lockheed Martin GPS III prototype validates test facilities for future flight satellites

LM-GPS
Lockheed Martinís GPS III Non-Flight Satellite Testbed has successfully completed a series of high-fidelity pathfinding events which validate the process and facility for vehicle integration checkout, as well as signals interference testing, that the next-generation satellites of the Global Positioning System, known as GPS III, will go through prior to delivery for launch.

An innovative investment by U.S. Air Force under the original GPS III development contract, the GNST is a full-sized GPS III satellite prototype which has helped to identify and resolve development issues prior to integration and test of the first GPS III space vehicle (SV 1).† Following the Air Forceís rigorous ìBack-to-Basicsî acquisition approach, the GNST has gone through the development, test and production process for the GPS III program first, significantly reducing risk for the flight vehicles, improving production predictability, increasing mission assurance and lowering overall program costs.

During this latest milestone, the GNST successfully completed thermal vacuum (T-Vac) chamber trail blazing, demonstrating facility, mechanical and electrical ground equipment integration, and ran a series of vehicle integration test procedures.† The GNST also completed Passive Intermodulation (PIM) and Electromagnetic Compatibility testing, which assures that multiple high-powered signals generated from the satelliteís navigation downlink transmissions, or transmitted from the hosted nuclear detection system payload on the satellite, do not interfere with each other or themselves.

As the GNST serves as a pathfinder for the GPS III program, its successful completion of this testing validates that development risks have been retired and our engineering and technology is sound for the flight vehicles being built, explained Keoki Jackson, vice president for Lockheed Martinís Navigation Systems mission area.

The GNST is now being prepared for shipment to Cape Canaveral U.S. Air Force Station, Fla., for more risk reduction activities related to satellite launch.

GPS III is a critically important program for the Air Force, affordably replacing aging GPS satellites in orbit, while improving capability to meet the evolving demands of military, commercial and civilian users. GPS III satellites will deliver three times better accuracy and ñ to outpace growing global threats that could disrupt GPS service ñ up to eight times improved anti-jamming signal power for additional resiliency.† The GPS III will also include enhancements adding to the spacecraftís design life and a new civil signal designed to be interoperable with international global navigation satellite systems.

Lockheed Martin is currently under contract for production of the first four GPS III satellites (SV 1-4), and has received advanced procurement funding for long-lead components for the fifth, sixth, seventh and eighth satellites (SV 5-8).

The Lockheed Martin team remains on track to deliver the first GPS III satellite, with its enhanced capabilities over current orbiting systems, for launch availability in 2014.

The GPS III team is led by the Global Positioning Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the GPS III prime contractor with teammates ITT Exelis, General Dynamics, Infinity Systems Engineering, Honeywell, ATK and other subcontractors. Air Force Space Commandís 2nd Space Operations Squadron, based at Schriever Air Force Base, Colo., manages and operates the GPS constellation for both civil and military users.




All of this week's top headlines to your email every Friday.


 
 

 
boeing-SC-787

Boeing South Carolina begins final assembly of its first 787-9 Dreamliner

Boeing has started final assembly of the 787-9 Dreamliner at its South Carolina facility. The team began joining large fuselage sections of the newest 787 Nov. 22 on schedule, a proud milestone for the South Carolina team and a...
 
 
NG-people2

Northrop Grumman names communications directors for Unmanned Systems, Military Aircraft Systems

Faith Jennings Northrop Grumman has announced that industry veteran Faith Jennings, and retired Rear Adm. Vic Beck will lead Communications for its Aerospace Systems sector’s unmanned systems and military aircraft divisio...
 
 

Northrop Grumman, Air Force complete integrated baseline review

Northrop Grumman has successfully conducted the integrated baseline review of the production, deployment and initial sustainment phase for the Enhanced Polar System Control and Planning Segment. The U.S. Air Force’s EPS provides space-enabled, secure communications capabilities to polar users in support of national objectives. EPS CAPS receives telemetry and supplies configuration command...
 

 

UTC names president, CEO

United Technologies Corporation announced Nov. 24 that Louis R. Chenevert has informed the Board of Directors of his retirement as chairman and chief executive officer, effective immediately. Gregory J. Hayes, UTC senior vice president and chief financial officer, has been elected President, Chief Executive Officer and a director. Edward A. Kangas, lead independent director, has...
 
 
LM-facility

Lockheed Martin opens Surface Navy Innovation Center

Lockheed Martin has opened the Surface Navy Innovation Center in Moorestown, N.J., to support the development of new technologies for the U.S. Navy. The SNIC is a research, development and demonstration facility that brings tog...
 
 
raytheon-test

Raytheon successfully demonstrates integrated electronic warfare capabilities

EL SEGUNDO, Calif. – Raytheon, in collaboration with the U.S. Navy, successfully demonstrated an end to end, first of its kind, integrated electronic attack system during flight tests at the Naval Air Weapons Station Chi...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>