Space

July 10, 2013

NASA satellite provides first view of solar system’s tail

Like a comet, the solar system has a tail. NASA’s Interstellar Boundary Explorer has for the first time mapped out the structure of this tail, which is shaped like a four-leaf clover.

Scientists describe the tail, called the heliotail, based on the first three years of IBEX imagery in a paper published in the July 10 edition of the Astrophysical Journal.

While telescopes have spotted such tails around other stars, it has been difficult to see whether our star produced one. The particles found in the tail – and throughout the entire heliosphere, the region of space influenced by our sun – do not shine, so they cannot be seen with conventional instruments.

“By examining the neutral atoms, IBEX has made the first observations of the heliotail,” said David McComas, IBEX principal investigator at Southwest Research Institute in San Antonio, Texas, and the paper’s lead author. “Many models have suggested the heliotail might look like this or like that, but we have had no observations. We always drew pictures where the tail of the solar system just trailed off the page, since we couldn’t even speculate about what it really looked like.”

IBEX measures the neutral particles created by collisions at the solar system’s boundaries. This technique, called energetic neutral atom imaging, relies on the fact that the paths of neutral particles are not affected by the solar magnetic field. Instead, the particles travel in a straight line from collision to IBEX. Consequently, observing where the neutral particles came from describes what is going on in these distant regions.

“Since first light in 2008, the IBEX mission team has amazed us with its discoveries at the interstellar boundary, including a previously unknown ribbon of energetic neutral particles stretching across it,” said Arik Posner, NASA’s IBEX program scientist in Washington. “The new IBEX image of the heliotail fills in a previously blank area on the map. We are first-hand witnesses of rapid progress in heliophysics science.”

By combining observations from the first three years of IBEX imagery, the team showed a tail with a combination of fast and slow moving particles. There are two lobes of slower particles on the sides and faster particles above and below. This four-leaf clover shape can be attributed to the fact that the sun has been sending out fast solar wind near its poles and slower wind near its equator for the last few years. This is a common pattern in the most recent phase of the sun’s 11-year activity cycle.

The clover shape does not align perfectly with the solar system, however. The entire shape is rotated slightly, indicating that as it moves further away from the sun and its magnetic influence, the charged particles begin to be nudged into a new orientation, aligning with the magnetic fields from the local galaxy.

Scientists do not know how long the tail is, but think that it eventually fades away and becomes indistinguishable from the rest of interstellar space. Scientists are testing their current computer simulations of the solar system against the new observations to improve our understanding of the comet-like tail streaming out behind us.

IBEX is a NASA Heliophysics Small Explorer mission. The Southwest Research Institute leads IBEX with a team of national and international partners. NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA’s Science Mission Directorate in Washington.

 




All of this week's top headlines to your email every Friday.


 
 

 
Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

NASA spacecraft nears historic dwarf planet arrival

Image courtesy of NASA/JPL-Caltech/UCLA/MPS/DLR/IDA NASA’s Dawn spacecraft took these images of dwarf planet Ceres from about 25,000 miles away Feb. 25, 2015. Ceres appears half in shadow because of the current position o...
 
 

Northrop Grumman’s AstroMesh reflector successfully deploys for NASA’s SMAP satellite

The NASA Jet Propulsion Laboratory successfully deployed the mesh reflector and boom aboard the Soil Moisture Active Passive spacecraft, a key milestone on its mission to provide global measurements of soil moisture. Launched Jan. 31, SMAP represents the future of Earth Science by helping researchers better understand our planet. SMAP’s unmatched data capabilities are enabled...
 
 
NASA photograph by Brian Tietz

NASA offers space tech grants to early career university faculty

NASA photograph by Brian Tietz Tensegrity research is able to simulate multiple forms of locomotion. In this image, a prototype tensegrity robot reproduces forward crawling motion. NASA’s Space Technology Mission Director...
 

 

NASA releases first global rainfall, snowfall map from new mission

Like a lead violin tuning an orchestra, the GPM Core Observatory – launched one year ago on Feb. 27, 2014, as a collaboration between NASA and the Japan Aerospace Exploration Agency – acts as the standard to unify precipitation measurements from a network of 12 satellites. The result is NASA’s Integrated Multi-satellite Retrievals for GPM...
 
 

New NASA Earth Science Missions expand view of our home planet

Four new NASA Earth-observing missions are collecting data from space with a fifth newly in orbit ñ after the busiest year of NASA Earth science launches in more than a decade. On Feb. 27, 2014, NASA and the Japan Aerospace Exploration Agency launched the Global Precipitation Measurement Core Observatory into space from Japan. Data from...
 
 

NASA, ESA telescopes give shape to furious black hole winds

NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) and ESA’s (European Space Agency) XMM-Newton telescope are showing that fierce winds from a supermassive black hole blow outward in all directions – a phenomenon that had been suspected, but difficult to prove until now. This discovery has given astronomers their first opportunity to measure the strength of these...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>