Tech

July 12, 2013

NASA, industry test additively manufactured rocket engine injector

NASA and Aerojet Rocketdyne of West Palm Beach, Fla., recently finished testing a rocket engine injector made through additive manufacturing, or 3-D printing.

This space technology demonstration may lead to more efficient manufacturing of rocket engines, saving American companies time and money.

NASA’s Glenn Research Center in Cleveland conducted the successful tests for Aerojet Rocketdyne through a non-reimbursable Space Act Agreement.

A series of firings of a liquid oxygen and gaseous hydrogen rocket injector assembly demonstrated the ability to design, manufacture and test a highly critical rocket engine component using selective laser melting manufacturing technology. Aerojet Rocketdyne designed and fabricated the injector by a method that employs high-powered laser beams to melt and fuse fine metallic powders into three dimensional structures.

“NASA recognizes that on Earth and potentially in space, additive manufacturing can be game-changing for new mission opportunities, significantly reducing production time and cost by ‘printing’ tools, engine parts or even entire spacecraft,” said Michael Gazarik, NASA’s associate administrator for space technology in Washington. “3-D manufacturing offers opportunities to optimize the fit, form and delivery systems of materials that will enable our space missions while directly benefiting American businesses here on Earth.”

This type of injector manufactured with traditional processes would take more than a year to make but with these new processes it can be produced in less than four months, with a 70 percent reduction in cost.

“Rocket engine components are complex machined pieces that require significant labor and time to produce. The injector is one of the most expensive components of an engine,” said Tyler Hickman, who led the testing at Glenn.

Aerojet Rocketdyne’s additive manufacturing program manager, Jeff Haynes, said the injector represents a significant advancement in application of additive manufacturing, most often used to make simple brackets and other less critical hardware. “The injector is the heart of a rocket engine and represents a large portion of the resulting cost of these systems. Today, we have the results of a fully additive manufactured rocket injector with a demonstration in a relevant environment.” he said.

Glenn and Aerojet Rocketdyne partnered on the project with the Air Force Research Laboratory at Edwards Air Force Base, Calif. At the Air Force lab, a unique high-pressure facility provided pre-test data early in the program to give insight into the spray patterns of additively manufactured injector elements.

“Hot fire testing the injector as part of a rocket engine is a significant accomplishment in maturing additive manufacturing for use in rocket engines,” said Carol Tolbert, manager of the Manufacturing Innovation Project at Glenn. “These successful tests let us know that we are ready to move on to demonstrate the feasibility of developing full-size, additively manufactured parts.”




All of this week's top headlines to your email every Friday.


 
 

 

Headlines August 1, 2014

News: Military downsizing leaves U.S. too weak to counter global threats, panel finds - An independent panel appointed by the Pentagon and Congress said July 31 that President Obama’s strategy for sizing the armed services is too weak for today’s global threats. Defense industry funds flow to contenders for key House chairmanships - Four of the top...
 
 

News Briefs August 1, 2014

China allows foreign reporters at news conference Foreign reporters are being allowed to attend China’s Defense Ministry briefings for the first time, marking a small milestone in the increasingly confident Chinese military’s efforts to project a more transparent image. Restrictions still apply and there is no sign of an improvement in the generally paltry amount...
 
 
Army photograph by John Andrew Hamilton

Rapid Equipping Force, PEO Soldier test targeting device at White Sands Missile Range

Army photograph by John Andrew Hamilton SFC Justin Rotti, a combat developer from the Training and Doctrine Command Fire Cell, Fires Center of Excellence, uses a developmental hand held precision targeting device during a test ...
 

 

NASA awards modification for geophysics, geodynamics, space geodesy support contract

NASA has awarded a modification to Stinger Ghaffarian Technologies Inc. of Greenbelt, Md. to continuing working the the Geophysics, Geodynamics and Space Geodesy Support Services contract. The maximum ordering value of the GGSG contract will increase to $76.8 million. The previous amount was $49.5 million. The increase in the maximum ordering value of the contract...
 
 
boeing-japan

Boeing, All Nippon Airways finalize order for 40 wide-body airplanes

  Boeing and All Nippon Airways July 31 finalized an order for 40 widebody airplanes – 20 777-9Xs, 14 787-9 Dreamliners and six 777-300ERs (Extended Range) – as part of the airline’s strategic long-haul fleet ren...
 
 

Excalibur Ib enters full rate production, receives $52 million award

TUCSON, Ariz., July 31, 2014 /PRNewswire/ — Raytheon’s Excalibur Ib precision guided projectile has entered full rate production. U.S. Army approval of FRP completes Excalibur Ib’s low rate initial production phase. †Additionally, the U.S. Army has awarded Raytheon $52 million for continued Excalibur Ib production. “The full rate production decision is the culmination ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>