Tech

July 17, 2013

First electrically powered nanolasers capable of being operated at room temperature tested

Robert White, Ph.D.
Arlington, Va.

Significant proof of the critical importance of long term basic research funding has been demonstrated with the first convincing operation of a room temperature, continuous wave nanolaser powered by electricity.

Funded by the Air Force Office of Scientific Research and the Defense Advanced Research projects Agency, Dr. Cun-Zheng Ning and his team at Arizona State University accomplished something that may very well result in a key solution to keeping Moore’s Law on track.

Moore’s Law is the prediction that, over the long term, the number of transistors embedded on integrated circuits would double about every two years. Shrinking the size of lasers is crucial to integrating photonic with electronic components as they become not only smaller, but faster. By placing more lasers into the same space, far greater processing speeds are attained – which makes possible the next generation of computers.

Much of the research that led up to this breakthrough concerned nanolasers powered by larger light sources as opposed to being powered directly by electrical current. Light powered nanolasers can readily operate at room temperature, but there was a problem relating to their practical application – they were not powered by electricity, and were therefore not a solution for electronic applications, simply because embedding an additional light source, to power the nanolasers, was impractical; actually negating whatever space you saved by using nanolasers in the first place.

Ning noted that for nanolasers to be useful in electronic and photonic technologies – it is necessary that the laser operates at room temperature – without a cooling system, that it be powered by a simple battery instead of by another laser light source, and that it is able to emit light continuously.
Previous experiments at electrically powered nanolasers have failed due primarily to overheating – including attempts by Ning’s team. What was different this time came down to a matter of thickness.

Ning’s latest approach employed the same indium phosphide/indium gallium arsenide/indium phosphide (InP/InGaAs/InP) rectangular core and the same silicon nitride (SiN) insulating layer – encapsulated in a silver shell – used in a previous mockup, which failed due to overheating. When the team refined the fabrication process and adjusted the thickness of the SiN layer, the heat dissipated at a much faster rate – enough to keep the nanolaser in continuous operation.

In an ASU press release, Ning noted that, “In terms of fundamental science, it shows for the first time that metal heating loss is not an insurmountable barrier for room-temperature operation of a metallic cavity nanolaser under electrical injection; for a long time, many doubted if such operation is even possible at all.”

What is significant from a basic research perspective is that this breakthrough was the culmination of nearly seven years of work by Professor Ning and his colleagues. But they will not rest at this point, as Ning wants to pursue two significant steps to follow up on his success: integration on a silicon waveguide and to pursue high speed modulation, which Ning foresees going as high as several 100 GHz, but ultimately the integration of nanolasers into a photonic system on chip platform.

Dr. Gernot Pomrenke, the AFOSR program officer who has funded Ning throughout this research endeavor notes that Ning’s success will have a significant impact on the further development and integration of nanolasers as it addresses thermal issues and the role of metals in such nanostructures. Ultimate solutions to such difficult problems will pave the road toward full integration of photonic and electronic micro and nanoscale components for use in various practical applications.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines March 6, 2015

News: IG: VHA misappropriated $92.5M for claims system - The Veterans Health Administration (VHA) misappropriated more than $90 million intended for medical support and compliance programs in order to build an automated claims processing system, according to an Inspector General report released this week.   Business: Gulf arms race fuels UAE push for defense industry - Soaring...
 
 

News Briefs March 6, 2015

Man charged with theft of military documents seeks release An engineer who worked for a defense contractor who’s been charged with attempting to travel to China with stolen documents on the development of advanced titanium for U.S. military aircraft is asking a judge to free him while he awaits trial. A hearing on Yu Long’s...
 
 
Air Force photograph by Rick Goodfriend

AFRL offering prize for turbine engine development

Air Force photograph by Rick Goodfriend Discover meetings to be held in Ohio on March 24-25. The Air Force Research Laboratory is leading the first Air Force technology prize, issuing a challenge to develop a small, efficient t...
 

 
Lockheed Martin photograph

Lockheed Martin P-3 Orion wing line restarted

Lockheed Martin photograph From left: Peter Hillier, Karen Eilbmeier, and Michael Spurr from the Canada Department of National Defence were on hand to commemorate the reopening of the P-3 wing line at Marietta, Ga.   Lockh...
 
 
Army photograph

Army Research Laboratory lays out science and technology priorities through 2019

Army photograph Dr. Rick Beyer, propulsion science expert, aligns a sample in a Bruker Wide-angle X-ray scattering camera at the Army Research Laboratory in Adelphi, Md. The laboratory recently released its technical implementa...
 
 
Air Force photograph by A1C Dillian Bamman

‘Iron Horse’ sets off for final flight

Air Force photograph by A1C Dillian Bamman Aircraft 62-1863 ‘Iron Horse’, a HC-130P Combat King, rests before takeoff Mar. 3, 2015, at Moody Air Force Base, Ga. Throughout its career, Iron Horse has flown for over 27,000 ho...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>