Tech

July 17, 2013

First electrically powered nanolasers capable of being operated at room temperature tested

Robert White, Ph.D.
Arlington, Va.

Significant proof of the critical importance of long term basic research funding has been demonstrated with the first convincing operation of a room temperature, continuous wave nanolaser powered by electricity.

Funded by the Air Force Office of Scientific Research and the Defense Advanced Research projects Agency, Dr. Cun-Zheng Ning and his team at Arizona State University accomplished something that may very well result in a key solution to keeping Moore’s Law on track.

Moore’s Law is the prediction that, over the long term, the number of transistors embedded on integrated circuits would double about every two years. Shrinking the size of lasers is crucial to integrating photonic with electronic components as they become not only smaller, but faster. By placing more lasers into the same space, far greater processing speeds are attained – which makes possible the next generation of computers.

Much of the research that led up to this breakthrough concerned nanolasers powered by larger light sources as opposed to being powered directly by electrical current. Light powered nanolasers can readily operate at room temperature, but there was a problem relating to their practical application – they were not powered by electricity, and were therefore not a solution for electronic applications, simply because embedding an additional light source, to power the nanolasers, was impractical; actually negating whatever space you saved by using nanolasers in the first place.

Ning noted that for nanolasers to be useful in electronic and photonic technologies – it is necessary that the laser operates at room temperature – without a cooling system, that it be powered by a simple battery instead of by another laser light source, and that it is able to emit light continuously.
Previous experiments at electrically powered nanolasers have failed due primarily to overheating – including attempts by Ning’s team. What was different this time came down to a matter of thickness.

Ning’s latest approach employed the same indium phosphide/indium gallium arsenide/indium phosphide (InP/InGaAs/InP) rectangular core and the same silicon nitride (SiN) insulating layer – encapsulated in a silver shell – used in a previous mockup, which failed due to overheating. When the team refined the fabrication process and adjusted the thickness of the SiN layer, the heat dissipated at a much faster rate – enough to keep the nanolaser in continuous operation.

In an ASU press release, Ning noted that, “In terms of fundamental science, it shows for the first time that metal heating loss is not an insurmountable barrier for room-temperature operation of a metallic cavity nanolaser under electrical injection; for a long time, many doubted if such operation is even possible at all.”

What is significant from a basic research perspective is that this breakthrough was the culmination of nearly seven years of work by Professor Ning and his colleagues. But they will not rest at this point, as Ning wants to pursue two significant steps to follow up on his success: integration on a silicon waveguide and to pursue high speed modulation, which Ning foresees going as high as several 100 GHz, but ultimately the integration of nanolasers into a photonic system on chip platform.

Dr. Gernot Pomrenke, the AFOSR program officer who has funded Ning throughout this research endeavor notes that Ning’s success will have a significant impact on the further development and integration of nanolasers as it addresses thermal issues and the role of metals in such nanostructures. Ultimate solutions to such difficult problems will pave the road toward full integration of photonic and electronic micro and nanoscale components for use in various practical applications.




All of this week's top headlines to your email every Friday.


 
 

 
onr-locust

LOCUST: Autonomous, swarming UAVs fly into the future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the¬†Office of Naval Research announced April 14 recent technology demonstrations of swarming unmanned aerial vehicles (UAVs) ‚Ä...
 
 
NASA photograph by Ken Ulbrich

Second X-56A MUTT makes first flight

NASA photograph by Ken Ulbrich NASA researchers are using the X-56A, a low-cost, modular, remotely piloted aerial vehicle, to explore the behavior of lightweight, flexible aircraft structures. Researchers at NASA’s Armstrong ...
 
 
Air Force photograph by Rebecca Amber

Schaefer takes command of 412th Test Wing

Air Force photograph by Rebecca Amber Maj. Gen. Arnold Bunch Jr., Air Force Test Center commander (left), presents the 412th Test Wing guidon to Brig. Gen. Carl Schaefer signifying the beginning of his new command at the 412th ...
 

 

NASA creates partnership to advance composite materials for aircraft of future

NASA has established a public-private partnership with five organizations to advance knowledge about composite materials that could improve the performance of future aircraft. Composites are innovative new materials for building aircraft that can enhance strength while remaining lightweight. The agency selected the National Institute of Aerospace in Hampton, Va., to manage administration of the...
 
 

NASA awards IT contracts to 118 small, disadvantaged businesses

NASA has awarded 118 contracts to small, disadvantaged businesses under Solutions for Enterprise-Wide Procurement (SEWP V), a multi-award Government-Wide Acquisition Contract vehicle focused on information technology products and product-based services. Of these SEWP V contracts, 14 were awarded to businesses operating in historically underutilized business zones, 25 contracts were awarded to b...
 
 
NASA photograph

Educators gain lunar, meteorite certification

NASA photograph Teachers learning about a volcanism activity known as Lava Layering using baking soda and vinegar to simulate a volcanic eruption. A Lunar and Meteorite Disk Certification educator workshop was held at the NASA ...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>