Business

July 17, 2013

NASA’s Student Airborne Research Program: Learning by doing

Interns participating in NASA’s Student Airborne Research Program board NASA’s DC-8 for a science flight over California to investigate several topics including air pollution, forest health, and near shore and ocean studies.

A group of American college students are spending eight weeks this summer participating in an internship that offered hands-on experience in the planning and execution of a NASA Airborne Science mission.

The 32 participants in the 2013 Student Airborne Research Program were involved in every aspect of a science mission from upload of sensors to collecting science data, in the air, on the ground or from a boat. After their field experience, the undergraduate interns began classroom and laboratory work at the University of California, Irvine where they are poring over the science data and developing presentations to summarize their research.

The airborne research was conducted on NASA’s DC-8 flying laboratory based at the Dryden Aircraft Operations Facility in Palmdale, Calif. Each student had three flight opportunities and those who were involved in the forest or aquatic field research went with faculty advisors to those sites and collected data when the DC-8 flew a mission overhead.

Barry Lefer, (right) professor of atmospheric science at the University of Houston, studies Los Angeles air quality data collected by several science instruments on NASA’s DC-8 flight lab during a Student Airborne Research Program flight with student interns Tyra Brown of Millersville University in

It takes a number of individuals to support the students’ flying mission. One individual important to every flight is a meteorologist. Henry Fuelberg, professor of Meteorology at Florida State University in Tallahassee, has filled that role since the SARP’s inception five years ago and has worked on a variety of NASA science missions since 1992.

One area of the interns’ research interest is air pollution. Fuelberg explained that most pollution is released at or near the Earth’s surface. The way it disperses and its altitude is dependent upon weather.
He offered the example of wildfire smoke ascending to 30,000 feet altitude within 30 minutes if there is a thunderstorm in the area.

Fuelberg prepared a weather report and offered his findings at each flight crew briefing. He also flew aboard the aircraft and mingled with the students. He found the students bright and enthusiastic. As he said, “the pick of the crop.”

Donald Blake, a professor of chemistry and Earth system science at the University of California, Irvine, was aboard the flights with a sensor that allowed the students to collect air samples in flight. Blake noted that this year’s group of students were all undergraduates and most had not yet applied to graduate school.

“The students have an opportunity that can be life changing,” said Blake. “There was a kid from Alaska (a former SARP intern) who was hard core into rocks (geology). He is now in Boulder and is a “gas” guy – from rocks to gas. This program opens the eyes of many young people.”

“There may be a person on this plane that could end up as the NASA administrator,” Blake added.

In addition to faculty advisors Fuelberg and Blake, Raphael Kudela, ocean sciences professor of University of California, Santa Cruz, led the interns in an oceans research project. Susan Ustin, professor of environmental and resource sciences at the University of California, Davis, was the faculty advisor for the land remote sensing group.

Don Blake, (second from left) professor of chemistry and Earth system science at the University of California – Irvine, briefs Student Airborne Research Program interns on the components of the Whole Air Sampler instrument.

Five student mentors supported the program. Nicole Grossberg participated in the 2010 Student Airborne Research Program as a graduate student. This year, Grossberg returned as a mentor to support the students in creating a project, collecting the data and helping them produce a research paper. Grossberg said she learns as much from the students as she gives them.

Several students were studying carbon dioxide. Matt Davey of Lyndon State College in Lyndonville, Vt., said that there is a huge difference between being given information in a classroom and collecting raw data in field studies. The DC-8 flight was one of the first times flying for Tyra Brown of Millersville University, Pa. She appreciated the opportunity to both fly and work on the aircraft. Sam Pellock, an undergraduate student at Murray State University in Kentucky, had no idea how to do airborne research before the SARP internship. He was amazed to be able to collect data and see entire columns of carbon dioxide.

Molly Smith of Cornell University, Ithaca, N.Y, was especially pleased to have been selected for SARP. Smith attended high school just 20 miles south of the DC-8′s home base. She was interested in studying the familiar local weather as she plans to become a meteorologist.

Faculty advisor Barry Lefer, atmospheric science and chemistry professor at the University of Houston, was the lead for Los Angeles air quality research that required a few unusual and low-level flight requests.

DC-8 flight planner Carl Magnusson said that having flown SARP missions previously, he had an idea of what the science team wanted. Several of the 2013 flights included collecting air samples over the Los Angeles area.

“Air traffic congestion is a big planning factor, but we (NASA) have a great working relationship with Air Traffic Control,” said Magnusson. This proved advantageous during approaches flown to Los Angeles International Airport, Torrance Airport and March Reserve Base in Riverside, Calif.

“The SARP program has made the opportunity for student participation available to a wide audience, most with no other prior connection to any NASA program,” said NASA DC-8 pilot Bill Brockett. “SARP has ignited a passion for many of them, who have continued their studies or found jobs as a direct consequence of the experience.”

SARP is managed by NASA’s Ames Research Center through the National Suborbital Education and Research Center (NSERC) at the University of North Dakota with funding and support from the Earth Science Division of NASA’s Science Mission Directorate.

Emily Schaller, NSERC’s SARP project manager, begins planning the internship in the fall with the announcement that the application period is open. The instrumentation and flight planning begins in January, followed by review of the proposals and selection of the students in late winter. By summer, Schaller puts in long days in an effort to ensure the activity runs smoothly.

All involved in the Student Airborne Research Program appreciate its value.

“I expect to see a Nobel Prize winner out of this program in about 12 years,” said Brockett.




All of this week's top headlines to your email every Friday.


 
 

 

Headlines April 23, 2014

News: U.S. conducts spy flights over Russia - After a tit-for-tat series of delays, the United States conducted an Open Skies Treaty intelligence flight over Russian territory April 21, a State Department official said.  Army paratroopers heading to Poland after Russian annexation of Crimea - U.S. Army paratroopers are arriving in Poland to begin a series of...
 
 

News Briefs April 23, 2014

U.S. military deaths in Afghanistan at 2,177 As of April 22, 2014, at least 2,177 members of the U.S. military had died in Afghanistan as a result of the U.S.-led invasion of Afghanistan in late 2001, according to an Associated Press count. The AP count is one less than the Defense Department’s tally. At least...
 
 

Northrop Grumman sets new greenhouse gas emission reduction goal of 30 percent by 2020

Northrop Grumman announced April 22 its commitment to reduce greenhouse gas emissions by 30 percent from 2010 levels by 2020, as part of its commemoration of Earth Day.   “Northrop Grumman is dedicated to top performance in environmental sustainability,” said Wes Bush, chairman, chief executive officer and president. “This new goal sets the bar significantly...
 

 

Lockheed Martin demonstrates enhanced ground control system, software for small UAV

Lockheed Martin’s Group 1 family of unmanned aircraft systems is migrating to enhanced automation capabilities using its Kestrelô “Fly Light” flight control systems and industry-leading mobile Ground Control Station software. The increased automation allows operators to focus on executing the mission, rather than flying various aircraft. Earlier this year, Lockheed MartinR...
 
 

U.S. Navy awards General Dynamics $33 million to operate, maintain military sealift ships

The U.S. Navy has awarded General Dynamics American Overseas Marine LLC a $32.7 million contract modification to operate and maintain seven large, medium-speed, roll-on / roll-off ships for the Military Sealift Command. AMSEA is a wholly owned subsidiary of General Dynamics. Under the terms of the modification, AMSEA will provide services including crewing, engineering, maintenance,...
 
 

US Navy deploys Standard Missile-3 Block IB for first time

In partnership with the Missile Defense Agency, the U.S. Navy deployed the second-generation Standard Missile-3 Block IB made by Raytheon for the first time, initiating the second phase of the Phased Adaptive Approach. “The SM-3 Block IB’s completion of initial operational testing last year set the stage for a rapid deployment to theater,” said Dr....
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>