Business

July 22, 2013

Lockheed Martin GPS III satellite prototype to help Cape Canaveral Air Force Station prep for launch

Lockheed Martin recently delivered a full-sized, functional prototype of the next-generation Global Positioning System satellite to Cape Canaveral Air Force Station to test facilities and pre-launch processes in advance of the arrival of the first GPS III flight satellite.

The GPS III Non-Flight Satellite Testbed arrived at the Cape July 19 to begin to dry run launch base space vehicle processing activities and other testing that future flight GPS III satellites will undergo.  The first flight GPS III satellite is expected to arrive at the Cape in 2014, ready for launch by the U.S. Air Force in 2015.

The GNST arrived at the Cape by Air Force C-17 aircraft from Buckley Air Force Base near Lockheed Martin’s GPS III Processing Facility in Denver, Colo.  Prior to shipment, the GNST was developed and then completed a series of high-fidelity activities to pathfind the integration, test and environmental checkout that all production GPS III satellites undergo at Lockheed Martin’s new satellite manufacturing facility.

An innovative investment by the Air Force under the original GPS III development contract, the GNST has helped to identify and resolve development issues prior to integration and test of the first GPS III flight space vehicle (SV 01).  Following the Air Force’s rigorous “Back-to-Basics” acquisition approach, the GNST has gone through the development, test and production process for the GPS III program first, significantly reducing risk for the flight vehicles, improving production predictability, increasing mission assurance and lowering overall program costs.

“We call the GNST a ‘pathfinder’ because it has truly blazed the trail for every one of our GPS III processes from initial development, production, integration and test, and now pre-launch activities,” explained Keoki Jackson, vice president for Lockheed Martin’s Navigation Systems mission area.  “All future GPS III satellites will follow this same path, so the GNST was a smart initiative to help us discover and resolve any issues in advance, implement production efficiencies, and ultimately save a tremendous amount of time and money in the long run.”

GPS III is a critically important program for the Air Force, affordably replacing aging GPS satellites in orbit, while improving capability to meet the evolving demands of military, commercial and civilian users.  GPS III satellites will deliver three times better accuracy, include enhancements which extend spacecraft life 25 percent further than the prior GPS block, and a new civil signal designed to be interoperable with international global navigation satellite systems.

Lockheed Martin is currently under contract for production of the first four GPS III satellites, and has received advanced procurement funding for long-lead components for the fifth, sixth, seventh and eighth satellites.

The GPS III team is led by the Global Positioning Systems Directorate at the U.S. Air Force Space and Missile Systems Center, Los Angeles Air Force Base, Calif. Lockheed Martin is the GPS III prime contractor with teammates ITT Exelis, General Dynamics, Infinity Systems Engineering, Honeywell, ATK and other subcontractors. Air Force Space Command’s 2nd Space Operations Squadron (2SOPS), based at Schriever Air Force Base, Colo., manages and operates the GPS constellation for both civil and military users.

 




All of this week's top headlines to your email every Friday.


 
 

 

Headlines September 2, 2014

News: Debris yields clues that pilot never ejected - When investigators were finally able to safely enter the crash site of an F-15C “Eagle” fighter jet on the afternoon of Aug. 27, they made a grim discovery that concluded more than 30 hours of searching – the pilot never managed to eject from the aircraft.  ...
 
 

News Briefs September 2, 2014

Pentagon: Iraq operations cost $560 million so far U.S. military operations in Iraq, including airstrikes and surveillance flights, have cost about $560 million since mid-June, the Pentagon said Aug. 29. Rear Adm. John Kirby, the Pentagon press secretary, said the average daily cost has been $7.5 million. He said it began at a much lower...
 
 

Unmanned aircraft partnership reaches major milestone

A team of research students and staff from Warsaw University of Technology have successfully demonstrated the first phase of flight test and integration of unmanned aircraft platforms with an autonomous mission control system. The demonstration marks a significant milestone in a partnership between the university and Lockheed Martin that began earlier this year. This is...
 

 

Raytheon delivers first Block 2 Rolling Airframe Missiles to US Navy

Raytheon delivered the first Block 2 variant of its Rolling Airframe Missile system to the U.S. Navy as part of the company’s 2012 Low Rate Initial Production contract. RAM Block 2 is a significant performance upgrade featuring enhanced kinematics, an evolved radio frequency receiver, and an improved control system. “As today’s threats continue to evolve,...
 
 
Courtesy photograph

Two Vietnam War Soldiers, one from Civil War to receive Medal of Honor

U.S. Army graphic Retired Command Sgt. Maj. Bennie G. Adkins and former Spc. 4 Donald P. Sloat will receive the Medal of Honor for actions in Vietnam. The White House announced Aug. 26 that Retired Command Sgt. Maj. Bennie G. A...
 
 

Sparks fly as NASA pushes limits of 3-D printing technology

NASA has successfully tested the most complex rocket engine parts ever designed by the agency and printed with additive manufacturing, or 3-D printing, on a test stand at NASA’s Marshall Space Flight Center in Huntsville, Ala. NASA engineers pushed the limits of technology by designing a rocket engine injector – a highly complex part that...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>