Business

July 26, 2013

Lockheed Martin ships NIRCam for Webb telescope to NASA

The Near-Infrared Camera for NASA’s James Webb Space Telewcope is seen in a cleanroom at the Lockheed Martin Advanced Technology Center in Palo Alto, Calif., where it was designed and built.

 
Lockheed Martin, under a contract from the University of Arizona, has completed assembly and testing of the Near Infrared Camera and has shipped the instrument to the NASA Goddard Space Flight Center in Greenbelt, Md.

NIRCam is the prime near-infrared imaging instrument for NASA’s James Webb Space Telescope.

The James Webb Space Telescope is NASA’s next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, JWST will observe the most distant objects in the universe, provide images of the very first galaxies ever formed, provide insight to how solar systems evolve and help explore planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency, and the Canadian Space Agency.

The University of Arizona and Lockheed Martin are responsible for the NIRCam instrument design (Optical, Mechanical, Structural, Thermal, Electronic, Precision Mechanisms and Control Software) as well as the instrument control and focal plane electronics and software.  In addition to Lockheed Martin and the University of Arizona, the NIRCam team comprises Teledyne Imaging Sensors of Camarillo, Calif. and a team of science co-investigators.

“It is very satisfying to have completed assembly and testing of this magnificent astrophysical instrument,” said Jeff Vanden Beukel, Lockheed Martin NIRCam program director at the Advanced Technology Center. “We all feel privileged to have worked on this mission and look forward to the day when our engineering and manufacturing efforts will help produce discoveries yielding a greater understanding of the Universe.”

“As we view the Universe with more powerful tools, not only do we confirm or overturn current concepts, but we always learn new and exciting things,” said Dr. Marcia Rieke of the University of Arizona and NIRCam principal investigator. “I couldn’t be happier that we’ve reached this milestone. I’m certain that all of the hard work and terrific collaboration of the NIRCam team will lead to a very big payoff not too far down the line.”

NIRCam will detect light from the earliest stars and galaxies in the process of formation; young stars in the Milky Way; physical and chemical properties of planets orbiting other stars; and objects within our Solar System. The camera is equipped with coronagraphs, (instruments that allow astronomers to take pictures of very faint objects around a central bright object, like planets around distant stars.) The NIRCam coronagraphs work by blocking a brighter object’s light, making it possible to view the dimmer object nearby – just as shielding the sun from your eyes with your hand allows you to focus on the view in front of you. Astronomers hope to determine the characteristics of planets orbiting nearby stars. NIRCam is not only a science camera, but also the wavefront sensor responsible for keeping the telescope mirrors in phase and focused for all the other science instruments.

The NIRCam instrument consists of two identical optical imaging modules and contains focal plane assemblies (FPA) assembled at the University of Arizona using detectors provided by Teledyne. The FPA hardware consists of 40 million pixels, and is designed for cryogenic operation at 35 Kelvin, or approximately -400 degrees Fahrenheit. The FPA hardware requires regulated power, output data synchronization, temperature control and operational mode controls as well as image data conditioning, amplification and digitization. The NIRCam focal plane electronics (FPE) and its associated software will provide these functions. The FPE hardware and software also convey the image data to the JWST integrated science instrument module command and data handling computer.

The NASA Goddard Space Flight Center manages the JWST project. Principal Investigators under contract to NASA, ESA, and CSA are developing scientific instruments for the observatory. The Space Telescope Science Institute in Baltimore, Md., is developing the ground system for the mission and will be responsible for observatory operations and science program management.

NIRCam is one of the scientific instruments managed by Lockheed Martin’s Civil Space line of business. The instrument was designed and built at the ATC in Palo Alto, Calif. The ATC is the research and development organization of Lockheed Martin Space Systems Company (LMSSC). LMSSC, a major operating unit of Lockheed Martin Corporation, designs and develops, tests, manufactures and operates a full spectrum of advanced-technology systems for national security and military, civil government and commercial customers. Chief products include human space flight systems; a full range of remote sensing, navigation, meteorological and communications satellites and instruments; space observatories and interplanetary spacecraft; laser radar; ballistic missiles; missile defense systems; and nanotechnology research and development.

 




All of this week's top headlines to your email every Friday.


 
 

 

NASA awards Raytheon $240 million contract for earth science data system

NASA’s Goddard Space Flight Center has awarded the Raytheon a five year contract valued at up to $240 million to continue its support of the Earth Observing Systems Data and Information System. This system ingests, archives and makes earth science data available to the scientific community worldwide. The latest EOSDIS Evolution and Development contract is...
 
 
U.S. Chamber of Commerce photograph

Boeing, Embraer to collaborate on ecoDemonstrator technology tests

U.S. Chamber of Commerce photograph Frederico Curado, president & CEO of Embraer, and Marc Allen, president of Boeing International, at the Brazil-U.S. Business Summit in Washington, D.C. The event occurred during an offici...
 
 
LM-Legion

Lockheed Martin’s Legion Pod™ takes to skies

Lockheed Martin photograph by Randy Crites Lockheed Martin’s Legion Pod recently completed its first flight test, successfully tracking multiple airborne targets while flying on an F-16 in Fort Worth, Texas. Legion Pod was in...
 

 

Raytheon wins U.S. Army contract award

Will provide R&D for ground vehicles, ground robotics The U.S. Army Contracting Command ñ Warren recently awarded Raytheon the TACOM Strategic Service Solutions indefinite delivery/indefinite quantity contract. The five-year multiple-award vehicle has a ceiling value of $634 million. The agreement covers future work on sensors, fire control systems, active protection systems, and robotics...
 
 

Lockheed Martin’s EW pod delivers proven ability to protect, control electromagnetic spectrum

Lockheed Martin is testing an electronic warfare pod in the company’s advanced anechoic chamber. The pod is designed to fit a variety of platforms, and is a self-contained electronic warfare package, encompassing an entire suite of capabilities in one unit.  Electronic warfare is the art and science of controlling the electromagnetic spectrum—from jamming enemy communications...
 
 
Northrop Grumman photograph

Northrop, Navy successfully conduct E-2D Advanced Hawkeye aerial refueling CDR

Northrop Grumman photograph An E-2C test aircraft assigned to Air Test and Evaluation Squadron (VX) 20 conducts an aerial refueling dry-plug engagement with an F/A-18. Northrop Grumman along with the U.S. Navy have successfully...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>