Space

July 26, 2013

NASA’s WISE finds mysterious centaurs may be Comets

The true identity of centaurs, the small celestial bodies orbiting the sun between Jupiter and Neptune, is one of the enduring mysteries of astrophysics.

Are they asteroids or comets? A new study of observations from NASA’s Wide-field Infrared Survey Explorer finds most centaurs are comets.

Until now, astronomers were not certain whether centaurs are asteroids flung out from the inner solar system or comets traveling in toward the sun from afar. Because of their dual nature, they take their name from the creature in Greek mythology whose head and torso are human and legs are those of a horse.

“Just like the mythical creatures, the centaur objects seem to have a double life,” said James Bauer of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Bauer is lead author of a paper published online July 22 in the Astrophysical Journal. “Our data point to a cometary origin for most of the objects, suggesting they are coming from deeper out in the solar system.”

Cometary origin means an object likely is made from the same material as a comet, may have been an active comet in the past, and may be active again in the future.

The findings come from the largest infrared survey to date of centaurs and their more distant cousins, called scattered disk objects. NEOWISE, the asteroid-hunting portion of the WISE mission, gathered infrared images of 52 centaurs and scattered disk objects. Fifteen of the 52 are new discoveries. Centaurs and scattered disk objects orbit in an unstable belt. Ultimately, gravity from the giant planets will fling them either closer to the sun or farther away from their current locations.

Although astronomers previously observed some centaurs with dusty halos, a common feature of outgassing comets, and NASA’s Spitzer Space Telescope also found some evidence for comets in the group, they had not been able to estimate the numbers of comets and asteroids.

Infrared data from NEOWISE provided information on the objects’ albedos, or reflectivity, to help astronomers sort the population. NEOWISE can tell whether a centaur has a matte and dark surface or a shiny one that reflects more light. The puzzle pieces fell into place when astronomers combined the albedo information with what was already known about the colors of the objects. Visible-light observations have shown centaurs generally to be either blue-gray or reddish in hue. A blue-gray object could be an asteroid or comet. NEOWISE showed that most of the blue-gray objects are dark, a telltale sign of comets. A reddish object is more likely to be an asteroid.

“Comets have a dark, soot-like coating on their icy surfaces, making them darker than most asteroids,” said the study’s co-author, Tommy Grav of the Planetary Science Institute in Tucson, Ariz. “Comet surfaces tend to be more like charcoal, while asteroids are usually shinier like the moon.”

The results indicate that roughly two-thirds of the centaur population is comets which came from the frigid outer reaches of our solar system. It is not clear whether the rest are asteroids. The centaur bodies have not lost their mystique entirely, but future research from NEOWISE may reveal their secrets further.

The paper is available online at:  http://iopscience.iop.org/0004-637X/773/1/22/

JPL,¬†managed by the California Institute of Technology in Pasadena, managed and operated WISE for NASA’s Science Mission Directorate. The NEOWISE portion of the project was funded by NASA’s Near Earth Object Observation Program. WISE completed its key mission objective, two scans of the entire sky, in 2011 and has been hibernating in space since then.

 




All of this week's top headlines to your email every Friday.


 
 

 
ball-satelilte

Ball Aerospace integrates two of five instruments for JPSS-1

Two of the five instruments scheduled to fly on the nation’s next polar-orbiting weather satellite, NOAA’s Joint Polar Satellite System -1, have been integrated to the spacecraft bus by prime contractor Ball Aerospa...
 
 
NASA/JPL photograph

NASA’s Dawn spacecraft captures best-ever view of dwarf planet

Zoomed out – PIA19173 Ceres appears sharper than ever at 43 pixels across, a higher resolution than images of Ceres taken by the NASA’s Hubble Space Telescope in 2003 and 2004. NASA’s Dawn spacecraft has retur...
 
 
ATK

ATK completes installation of world’s largest solid rocket motor for ground test

ATK The first qualification motor for NASA’s Space Launch Systems booster is installed in ATK’s test stand in Utah – ready for a March 11 static-fire test. NASA and ATK have completed installing the first Spac...
 

 
ULA photograph

Third Lockheed Martin-built MUOS satellite launched, responding to commands

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Complex 41 at...
 
 
ULA photograph

ULA successfully launches Navy’s Mobile User Objective System-3

ULA photograph The U.S. Air Force’s 45th Space Wing successfully launched the third Mobile User Objective System (MUOS) satellite, built by Lockheed Martin, for the U.S. Navy at 8:04 p.m. Jan. 20, 2015, from Launch Comple...
 
 

Aerojet Rocketdyne Propulsion supports launch, flight of third MUOS satellite

Aerojet Rocketdyne played a critical role in successfully placing the third of five planned Mobile User Objective System (MUOS-3) satellites, designed and built by Lockheed Martin, into orbit for the U.S. Navy. The mission was launched from Cape Canaveral Air Force Station in Florida aboard a United Launch Alliance Atlas V rocket, with five Aerojet...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>