Defense

August 2, 2013

Navy Turns to UAVs for help with radar, communications

Scientists recently launched unmanned aerial vehicles from a research vessel in a significant experiment that could help boost the Navyís radar and communications performance at sea.

Sailing off Virginia Beach, Va., from July 13 to 18, the Office of Naval Researchís Research Vessel Knorr explored ocean and atmospheric weather variations that can change the angle that radar and radio waves bend, making it more difficult for ships to remain undetected and hindering their ability to communicate or locate adversaries.

Sponsored by ONRís†Ocean Battlespace Sensing Department and the Oceanographer of the Navy, the initiative was part of Trident Warrioróa large annual fleet experiment organized by Navy Warfare Development Command.

Researchers used ONR-owned ScanEagle UAVsóalong with unmanned undersea and surface vehicles to obtain accurate, real-time measurements of variations in atmospheric and ocean conditions. Fluxes and turbulence caused by the interaction between the air and sea can significantly alter the path of electromagnetic waves in radar and communications systems.

Atmospheric ìductsî can trap energy in the lowest layer of the atmosphere, allowing radar and communications to travel over much longer distances, increasing the chances that information could reach unintended audiences. Energy also could be trapped aloft, preventing Navy radars from seeing things even if they normally would be well within range.

We need to understand where we are in relation to this ducting environment and understand the energy weíre emitting and the energy an adversary is emitting, said Dr. Dan Eleuterio, program officer for ONR’s Ocean Battlespace Sensing Department. ìIf we donít know these things, itís like rolling the dice. If we do know them, it can give us a tactical advantage.

Smaller, light unmanned aircraft are ideal for the task, because they can launch from a ship, get close to the oceanís surface and fly for extended periods of time. During the experiment, the UAVs flew as close as 100 feet above the ocean’s surface, allowing for more precise measurements.

Developed by the†Marine Physical Laboratory at Scripps Institution of Oceanography, the sensor packages used on the ScanEagles measured everything from surface waves, winds, humidity and temperature to fluxes in mass, momentum and energy. Once collected, the data was delivered to personnel aboard a destroyer and an amphibious assault ship participating in the experiment.

In the old days, we launched weather balloons to give us the best data on the real environment, but that only happened in one place and at one time of day,î said Cmdr. Rob Witzleb, head of capabilities and requirements on the staff of the Oceanographer of the Navy. ìMany miles and hours later, we were often left looking for answers when weapon systems didnít perform the way we thought they would. Using UAVs is giant leap forward in that they can give us near-continuous data, across multiple parameters where the atmosphere is the most unpredictable.

The recent research aboard R/V Knorr is in keeping with Chief of Naval Operations Adm. Jonathan Greenertís call for the Navy to expand the reach of its sensors and platforms with unmanned and autonomous systems. He has described these assets as critical for the Navy to dominate the new arenas of the electromagnetic spectrum and cyberspace.

In addition to ONR and Scripps, the experiment aboard R/V Knorr included representatives from the Naval Research Laboratory, Naval Surface Warfare Center Dahlgren, Space and Naval Warfare Systems Center Pacific, Naval Postgraduate School, Oregon State University and the Woods Hole Oceanographic Institute, which operates the research vessel, also part of the University-National Oceanographic Laboratory System.




All of this week's top headlines to your email every Friday.


 
 

 
Air Force photograph by TSgt. Terri Praden

Joint effort validates ability to move Stryker vehicles via air

Air Force photograph by TSgt. Terri Praden An Army Stryker combat vehicle is guided into a C-17 Globemaster III during a 25th Infantry Division training exercise Aug. 13, 2014, at Joint Base Pearl Harbor-Hickam, Hawaii. The Str...
 
 
NASA image

Ozone-depleting compound persists, NASA research shows

NASA image Satellites observed the largest ozone hole over Antarctica in 2006. Purple and blue represent areas of low ozone concentrations in the atmosphere; yellow and red are areas of higher concentrations. NASA research show...
 
 

F-16V completes major capability milestone

The newest configuration of the F-16 Fighting Falcon, the F-16V, has reached a major capability milestone with the integration of a new Active Electronically Scanned Array radar. Completing this milestone on schedule demonstrates our ability to meet program commitments, said Roderick McLean, vice president and general manager of the F-16/F-22 Integrated Fighter Group at Lockheed...
 

 

NASA’s RXTE satellite decodes rhythm of an unusual black hole

https://www.youtube.com/embed/TSWZI2oUgnI?enablejsapi=1&rel=0 Astronomers have uncovered rhythmic pulsations from a rare type of black hole 12 million light-years away by sifting through archival data from NASA’s Rossi X-ray Timing Explorer satellite. The signals have helped astronomers identify an unusual midsize black hole called M82 X-1, which is the brightest X-ray source in a ga...
 
 
Northrop Grumman image

Northrop Grumman developing XS-1 experimental spaceplane design for DARPA

Northrop Grumman image Northrop Grumman Corporation with Scaled Composites and Virgin Galactic is developing a preliminary design for DARPA’s Experimental Spaceplane XS-1, shown here in an artist’s concept. In addit...
 
 
Lockheed Martin photograph

Robots moving robots: Lockheed Martin conducts first fully autonomous mission

Lockheed Martin photograph A K-MAX unmanned helicopter delivers an SMSS unmanned ground vehicle during a fully autonomous mission demonstration at Fort Benning, Ga. A safety pilot was on board K-MAX but did not operate the cont...
 




0 Comments


Be the first to comment!


Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>